sklearn 非线性回归模型python
时间: 2023-08-22 08:10:36 浏览: 225
在Python中,可以使用sklearn库中的LinearRegression模型进行非线性回归。首先,需要导入所需的库和模块,如pandas、numpy、matplotlib等。然后,可以使用PolynomialFeatures函数将特征转换为相应的多项式形式,从而实现非线性回归。接下来,使用LinearRegression模型拟合转换后的特征和目标变量。最后,使用预测值进行可视化展示。\[1\]
在sklearn的线性回归模型LinearRegression中,可以使用fit()函数拟合模型,并在模型的coef_属性中存储拟合后的相关系数。可以使用predict()函数进行预测。此外,还可以使用mean_squared_error()函数计算均方误差,使用r2_score()函数计算决定系数。\[2\]
在最小二乘法返回的系数中,默认是不会对系数的正负进行限制的。但是在实际问题中,有时需要将相关系数限制为非负值,可以通过设置LinearRegression模型的positive参数为True来实现。\[3\]
#### 引用[.reference_title]
- *1* [python sklearn 实现线性回归与非线性回归](https://blog.csdn.net/weixin_49583390/article/details/120573540)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* *3* [机器学习之Python Sklearn——线性回归](https://blog.csdn.net/ljinddlj/article/details/125087428)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文