def train_lstm(n_symbols,embedding_weights,x_train,y_train,x_test,y_test): print ('Defining a Simple Keras Model...') model = Sequential() # or Graph or whatever model.add(Embedding(output_dim=vocab_dim, input_dim=n_symbols, mask_zero=True, weights=[embedding_weights], input_length=input_length)) # Adding Input Length model.add(LSTM(output_dim=50, activation='tanh', inner_activation='hard_sigmoid')) model.add(Dropout(0.5)) model.add(Dense(3, activation='softmax')) # Dense=>全连接层,输出维度=1 model.add(Activation('softmax')) print ('Compiling the Model...') model.compile(loss='categorical_crossentropy', optimizer='adam',metrics=['accuracy']) print ("Train...") # batch_size=32 model.fit(x_train, y_train, batch_size=batch_size, epochs=n_epoch,verbose=1) print ("Evaluate...") score = model.evaluate(x_test, y_test, batch_size=batch_size) yaml_string = model.to_yaml() with open('../model/lstm.yml', 'w') as outfile: outfile.write( yaml.dump(yaml_string, default_flow_style=True) ) model.save_weights('../model/lstm.h5') print ('Test score:', score) print ('Setting up Arrays for Keras Embedding Layer...') n_symbols,embedding_weights,x_train,y_train,x_test,y_test=get_data(index_dict, word_vectors,combined,y) print ("x_train.shape and y_train.shape:") print x_train.shape,y_train.shape train_lstm(n_symbols,embedding_weights,x_train,y_train,x_test,y_test)
时间: 2024-04-26 12:25:53 浏览: 244
这段代码定义了一个名为train_lstm的函数,用于训练一个LSTM模型并保存模型。这个函数包含六个参数,前三个参数n_symbols、embedding_weights和input_length是用于构建Embedding层的参数;后三个参数x_train、y_train和x_test、y_test是用于训练和评估模型的数据集。
具体来说,这个函数的操作包括:
1. 构建一个Sequential模型。
2. 向模型中添加一个Embedding层,使用预训练的词向量作为初始权重,并将输入长度设置为input_length。
3. 向模型中添加一个LSTM层,输出维度为50,激活函数为tanh,内部激活函数为hard_sigmoid。
4. 向模型中添加一个Dropout层,丢弃率为0.5。
5. 向模型中添加一个Dense层,输出维度为3,激活函数为softmax。
6. 编译模型,使用categorical_crossentropy作为损失函数,使用adam作为优化器,评估指标为准确率。
7. 训练模型,使用batch_size=32,训练轮数为n_epoch。
8. 评估模型,计算模型在测试集上的损失和准确率。
9. 将模型的结构保存为YAML文件,将模型的权重保存为HDF5文件。
在函数中,还调用了get_data函数,用于获取训练和测试集。最后,函数输出了模型在测试集上的损失和准确率。
需要注意的是,这段代码中有一些打印语句(print语句),如果你使用的是Python 3,需要将print语句改为print函数的调用形式,即在print后面加上一对括号。同时,这段代码中使用了一些未定义的变量(如vocab_dim、batch_size和n_epoch),你需要在调用train_lstm函数之前先定义这些变量。
阅读全文