matlab求解雅可比矩阵的代码
时间: 2023-03-29 12:03:53 浏览: 284
以下是 MATLAB 求解雅可比矩阵的代码:
function [x, k] = jacobi(A, b, x, tol, maxiter)
% Jacobi 迭代法求解线性方程组 Ax=b
% 输入参数:
% A:系数矩阵
% b:常数向量
% x:迭代初值
% tol:容许误差
% maxiter:最大迭代次数
% 输出参数:
% x:方程组的解
% k:迭代次数
n = length(b);
x = x;
k = ;
while k < maxiter
k = k + 1;
for i = 1:n
sigma = ;
for j = 1:n
if j ~= i
sigma = sigma + A(i, j) * x(j);
end
end
x(i) = (b(i) - sigma) / A(i, i);
end
if norm(A * x - b) < tol
return;
end
end
end
相关问题
matlab求雅可比矩阵逆矩阵
求雅可比矩阵的方法可以使用 Matlab 自带的 jacobian 函数,该函数可以接受多个参数,其中第一个参数是一个函数句柄,后面的参数是这个函数的输入变量。例如,如果我们要求函数 f(x,y,z) = [x^2+y^2, x*y*z, 2*x+3*y-z] 在点 (1,2,3) 处的雅可比矩阵,则可以使用以下代码:
```
syms x y z
f = [x^2+y^2, x*y*z, 2*x+3*y-z];
J = jacobian(f, [x, y, z]);
J = subs(J, [x, y, z], [1, 2, 3])
```
这里的 `syms x y z` 声明了 x、y、z 为符号变量,而 `subs` 函数用于将符号变量替换为具体的数值,这里将 (1,2,3) 代入计算。
求雅可比矩阵的逆矩阵可以使用 Matlab 自带的 inv 函数,例如:
```
inv(J)
```
注意,如果雅可比矩阵不是满秩的,那么它的逆矩阵是不存在的,此时可以使用伪逆矩阵(即最小二乘解)来代替。可以使用 Matlab 中的 pinv 函数来求伪逆矩阵。
matlab 求雅可比矩阵逆矩阵
求雅可比矩阵的方法可以使用 Matlab 自带的 jacobian 函数,该函数可以接受多个参数,其中第一个参数是一个函数句柄,后面的参数是这个函数的输入变量。例如,如果我们要求函数 f(x,y,z) = [x^2+y^2, x*y*z, 2*x+3*y-z] 在点 (1,2,3) 处的雅可比矩阵,则可以使用以下代码:
```
syms x y z
f = [x^2+y^2, x*y*z, 2*x+3*y-z];
J = jacobian(f, [x, y, z]);
J = subs(J, [x, y, z], [1, 2, 3])
```
这里的 `syms x y z` 声明了 x、y、z 为符号变量,而 `subs` 函数用于将符号变量替换为具体的数值,这里将 (1,2,3) 代入计算。
求雅可比矩阵的逆矩阵可以使用 Matlab 自带的 inv 函数,例如:
```
inv(J)
```
注意,如果雅可比矩阵不是满秩的,那么它的逆矩阵是不存在的,此时可以使用伪逆矩阵(即最小二乘解)来代替。可以使用 Matlab 中的 pinv 函数来求伪逆矩阵。
阅读全文