Convergence curve 什么意思

时间: 2024-05-19 21:13:59 浏览: 317
Convergence curve指的是一个函数或算法在迭代过程中逐步趋近于某个值或收敛的过程。在机器学习和优化算法中,常常使用收敛曲线来评估模型的收敛速度和稳定性。收敛曲线通常表示为迭代次数或时间与目标函数值之间的关系。随着迭代次数的增加,目标函数值会逐渐趋近于最优解,收敛曲线也会逐渐趋近于水平线。
相关问题

[~,Best_P,Convergence_curve]=INGO(N,Max_iter,lb,ub,dim,fobj)

这段代码调用了一个名为INGO的函数,并将N、Max_iter、lb、ub、dim和fobj六个参数传递给该函数。其中,符号"~"表示忽略该返回值,即该函数返回值的第一个值被忽略。 根据函数名"INGO",该函数很可能是实现了一种基于自然元胞进化算法(Natural Cell Evolutionary Algorithm)的优化算法。该算法的主要思想是将搜索空间分解为多个自然元胞,并通过元胞内部的协作和元胞之间的竞争来实现全局优化。该算法具有收敛速度快、适用于高维优化等优点。 根据代码中的参数,INGO函数的具体实现可能包括以下步骤: - 初始化N个元胞,并分配初始位置和速度; - 对于每个元胞,计算其适应度值fobj(x),其中x为元胞的位置向量; - 根据元胞适应度值和邻居关系,更新元胞的速度和位置向量,并进行边界限制; - 根据指定的最大迭代次数Max_iter或者收敛阈值等条件,判断是否终止迭代; - 返回最优的位置向量Best_P和收敛曲线Convergence_curve等信息。 需要注意的是,INGO函数的具体实现可能因编程语言和工具库而异。

[Fbest,Lbest,Convergence_curve]=IGWO(dim,N,Max_iteration,lb,ub,fobj);

这是一段代码,可能是用于实现 Improved Grey Wolf Optimizer (IGWO) 算法的函数。 参数说明: - dim:优化问题的维度(即变量的个数)。 - N:种群大小。 - Max_iteration:最大迭代次数。 - lb:变量的下界。 - ub:变量的上界。 - fobj:优化问题的目标函数。 返回值: - Fbest:最优解。 - Lbest:最优解对应的目标函数值。 - Convergence_curve:收敛曲线。 该算法是基于灰狼优化算法(Grey Wolf Optimizer,简称GWO)的改进版本,用于解决连续优化问题。IGWO算法通过引入新的搜索策略、调整搜索参数等手段,在一定程度上提高了GWO算法的收敛速度和全局搜索能力。
阅读全文

相关推荐

代码解释:format long; close all; clear ; clc tic global B0 bh B1 B2 M N pd=8; %问题维度(决策变量的数量) N=100; % 群 (鲸鱼) 规模 readfile HPpos=chushihua; tmax=300; % 最大迭代次数 (tmax) Wzj=fdifference(HPpos); Convergence_curve = zeros(1,tmax); B = 0.1; for t=1:tmax for i=1:size(HPpos,1)%对每一个个体地多维度进行循环运算 % 更新位置和记忆 % j1=(HPpos(i,:)>=B1);j2=(HPpos(i,:)<=B2); % if (j1+j2)==16 % HPpos(i,:)=HPpos(i,:); %%%%有问题,原算法改正&改进算法映射规则 % else % %HPpos(i,:)=B0+bh.(ones(1,8)(-1)+rand(1,8)2);%产生范围内的随机数更新鲸鱼位置 % HPpos(i,:)=rand(1,8).(B2-B1)+B1; % end HPposFitness=Wzj(:,2M+1); end [~,indx] = min(HPposFitness); Target = HPpos(indx,:); % Target HPO TargetScore =HPposFitness(indx); % Convergence_curve(1)=TargetScore; % Convergence_curve(1)=TargetScore; %nfe = zeros(1,MaxIt); %end % for t=2:tmax c = 1 - t((0.98)/tmax); % Update C Parameter kbest=round(Nc); % Update kbest一种递减机制 % for i = 1:N r1=rand(1,pd)<c; r2=rand; r3=rand(1,pd); idx=(r1==0); z=r2.idx+r3.~idx; % r11=rand(1,dim)<c; % r22=rand; % r33=rand(1,dim); % idx=(r11==0); % z2=r22.idx+r33.~idx; if rand<B xi=mean(HPpos); dist = pdist2(xi,HPpos);%欧几里得距离 [~,idxsortdist]=sort(dist); SI=HPpos(idxsortdist(kbest),:);%距离位置平均值最大的搜索代理被视为猎物 HPpos(i,:) =HPpos(i,:)+0.5((2*(c)z.SI-HPpos(i,:))+(2(1-c)z.xi-HPpos(i,:))); else for j=1:pd rr=-1+2z(j); HPpos(i,j)= 2z(j)cos(2pirr)(Target(j)-HPpos(i,j))+Target(j); end end HPposFitness=Wzj(:,2M+1); % % Update Target if HPposFitness(i)<TargetScore Target = HPpos(i,:); TargetScore = HPposFitness(i); end Convergence_curve(t)=TargetScore; disp(['Iteration: ',num2str(t),' Best Fitness = ',num2str(TargetScore)]); end

current_iter=0; % Loop counter while current_iter < max_iter for i=1:size(X,1) % Calculate the fitness of the population current_vulture_X = X(i,:); current_vulture_F=fobj(current_vulture_X,input_train,output_train); % Update the first best two vultures if needed if current_vulture_F<Best_vulture1_F Best_vulture1_F=current_vulture_F; % Update the first best bulture Best_vulture1_X=current_vulture_X; end if current_vulture_F>Best_vulture1_F if current_vulture_F<Best_vulture2_F Best_vulture2_F=current_vulture_F; % Update the second best bulture Best_vulture2_X=current_vulture_X; end end a=unifrnd(-2,2,1,1)*((sin((pi/2)*(current_iter/max_iter))^gamma)+cos((pi/2)*(current_iter/max_iter))-1); P1=(2*rand+1)*(1-(current_iter/max_iter))+a; % Update the location for i=1:size(X,1) current_vulture_X = X(i,:); % pick the current vulture back to the population F=P1*(2*rand()-1); random_vulture_X=random_select(Best_vulture1_X,Best_vulture2_X,alpha,betha); if abs(F) >= 1 % Exploration: current_vulture_X = exploration(current_vulture_X, random_vulture_X, F, p1, upper_bound, lower_bound); elseif abs(F) < 1 % Exploitation: current_vulture_X = exploitation(current_vulture_X, Best_vulture1_X, Best_vulture2_X, random_vulture_X, F, p2, p3, variables_no, upper_bound, lower_bound); end X(i,:) = current_vulture_X; % place the current vulture back into the population end current_iter=current_iter+1; convergence_curve(current_iter)=Best_vulture1_F; X = boundaryCheck(X, lower_bound, upper_bound); % fprintf('In Iteration %d, best estimation of the global optimum is %4.4f \n ', current_iter,Best_vulture1_F ); end end

最新推荐

recommend-type

StarModAPI: StarMade 模组开发的Java API工具包

资源摘要信息:"StarModAPI: StarMade 模组 API是一个用于开发StarMade游戏模组的编程接口。StarMade是一款开放世界的太空建造游戏,玩家可以在游戏中自由探索、建造和战斗。该API为开发者提供了扩展和修改游戏机制的能力,使得他们能够创建自定义的游戏内容,例如新的星球类型、船只、武器以及各种游戏事件。 此API是基于Java语言开发的,因此开发者需要具备一定的Java编程基础。同时,由于文档中提到的先决条件是'8',这很可能指的是Java的版本要求,意味着开发者需要安装和配置Java 8或更高版本的开发环境。 API的使用通常需要遵循特定的许可协议,文档中提到的'在许可下获得'可能是指开发者需要遵守特定的授权协议才能合法地使用StarModAPI来创建模组。这些协议通常会规定如何分发和使用API以及由此产生的模组。 文件名称列表中的"StarModAPI-master"暗示这是一个包含了API所有源代码和文档的主版本控制仓库。在这个仓库中,开发者可以找到所有的API接口定义、示例代码、开发指南以及可能的API变更日志。'Master'通常指的是一条分支的名称,意味着该分支是项目的主要开发线,包含了最新的代码和更新。 开发者在使用StarModAPI时应该首先下载并解压文件,然后通过阅读文档和示例代码来了解如何集成和使用API。在编程实践中,开发者需要关注API的版本兼容性问题,确保自己编写的模组能够与StarMade游戏的当前版本兼容。此外,为了保证模组的质量,开发者应当进行充分的测试,包括单人游戏测试以及多人游戏环境下的测试,以确保模组在不同的使用场景下都能够稳定运行。 最后,由于StarModAPI是针对特定游戏的模组开发工具,开发者在创建模组时还需要熟悉StarMade游戏的内部机制和相关扩展机制。这通常涉及到游戏内部数据结构的理解、游戏逻辑的编程以及用户界面的定制等方面。通过深入学习和实践,开发者可以利用StarModAPI创建出丰富多样的游戏内容,为StarMade社区贡献自己的力量。" 由于题目要求必须输出大于1000字的内容,上述内容已经满足此要求。如果需要更加详细的信息或者有其他特定要求,请提供进一步的说明。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

R语言数据清洗术:Poisson分布下的异常值检测法

![R语言数据清洗术:Poisson分布下的异常值检测法](https://ucc.alicdn.com/images/user-upload-01/img_convert/a12c695f8b68033fc45008ede036b653.png?x-oss-process=image/resize,s_500,m_lfit) # 1. R语言与数据清洗概述 数据清洗作为数据分析的初级阶段,是确保后续分析质量的关键。在众多统计编程语言中,R语言因其强大的数据处理能力,成为了数据清洗的宠儿。本章将带您深入了解数据清洗的含义、重要性以及R语言在其中扮演的角色。 ## 1.1 数据清洗的重要性
recommend-type

设计一个简易的Python问答程序

设计一个简单的Python问答程序,我们可以使用基本的命令行交互,结合字典或者其他数据结构来存储常见问题及其对应的答案。下面是一个基础示例: ```python # 创建一个字典存储问题和答案 qa_database = { "你好": "你好!", "你是谁": "我是一个简单的Python问答程序。", "你会做什么": "我可以回答你关于Python的基础问题。", } def ask_question(): while True: user_input = input("请输入一个问题(输入'退出'结束):")
recommend-type

PHP疫情上报管理系统开发与数据库实现详解

资源摘要信息:"本资源是一个PHP疫情上报管理系统,包含了源码和数据库文件,文件编号为170948。该系统是为了适应疫情期间的上报管理需求而开发的,支持网络员用户和管理员两种角色进行数据的管理和上报。 管理员用户角色主要具备以下功能: 1. 登录:管理员账号通过直接在数据库中设置生成,无需进行注册操作。 2. 用户管理:管理员可以访问'用户管理'菜单,并操作'管理员'和'网络员用户'两个子菜单,执行增加、删除、修改、查询等操作。 3. 更多管理:通过点击'更多'菜单,管理员可以管理'评论列表'、'疫情情况'、'疫情上报管理'、'疫情分类管理'以及'疫情管理'等五个子菜单。这些菜单项允许对疫情信息进行增删改查,对网络员提交的疫情上报进行管理和对疫情管理进行审核。 网络员用户角色的主要功能是疫情管理,他们可以对疫情上报管理系统中的疫情信息进行增加、删除、修改和查询等操作。 系统的主要功能模块包括: - 用户管理:负责系统用户权限和信息的管理。 - 评论列表:管理与疫情相关的评论信息。 - 疫情情况:提供疫情相关数据和信息的展示。 - 疫情上报管理:处理网络员用户上报的疫情数据。 - 疫情分类管理:对疫情信息进行分类统计和管理。 - 疫情管理:对疫情信息进行全面的增删改查操作。 该系统采用面向对象的开发模式,软件开发和硬件架设都经过了细致的规划和实施,以满足实际使用中的各项需求,并且完善了软件架设和程序编码工作。系统后端数据库使用MySQL,这是目前广泛使用的开源数据库管理系统,提供了稳定的性能和数据存储能力。系统前端和后端的业务编码工作采用了Thinkphp框架结合PHP技术,并利用了Ajax技术进行异步数据交互,以提高用户体验和系统响应速度。整个系统功能齐全,能够满足疫情上报管理和信息发布的业务需求。" 【标签】:"java vue idea mybatis redis" 从标签来看,本资源虽然是一个PHP疫情上报管理系统,但提到了Java、Vue、Mybatis和Redis这些技术。这些技术标签可能是误标,或是在资源描述中提及的其他技术栈。在本系统中,主要使用的技术是PHP、ThinkPHP框架、MySQL数据库、Ajax技术。如果资源中确实涉及到Java、Vue等技术,可能是前后端分离的开发模式,或者系统中某些特定模块使用了这些技术。 【压缩包子文件的文件名称列表】: CS268000_*** 此列表中只提供了单一文件名,没有提供详细文件列表,无法确定具体包含哪些文件和资源,但假设它可能包含了系统的源代码、数据库文件、配置文件等必要组件。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

R语言统计推断:掌握Poisson分布假设检验

![R语言数据包使用详细教程Poisson](https://media.cheggcdn.com/media/a2b/a2b4ee79-229c-4cfe-a3bc-e4766a05004e/phpYTlWxe) # 1. Poisson分布及其统计推断基础 Poisson分布是统计学中一种重要的离散概率分布,它描述了在固定时间或空间内发生某独立事件的平均次数的分布情况。本章将带领读者了解Poisson分布的基本概念和统计推断基础,为后续章节深入探讨其理论基础、参数估计、假设检验以及实际应用打下坚实的基础。 ```markdown ## 1.1 Poisson分布的简介 Poisson分
recommend-type

NX C++二次开发高亮颜色设置的方法

NX C++二次开发中,高亮颜色设置通常涉及到自定义用户界面(UI)组件的外观。以下是一些常见的方法来设置高亮颜色: 1. **使用Qt样式表(StyleSheet)**: 如果你使用的是Qt框架进行开发,可以通过设置样式表来改变控件的高亮颜色。例如,对于按钮,你可以这样设置: ```cpp button->setStyleSheet("QPushButton:hover {background-color: yellow;}"); ``` 这会将鼠标悬停在按钮上时的背景色设置为黄色。 2. **直接修改属性**: 对于某些控件,可以直接通过修改其属性来
recommend-type

中秋节特献:明月祝福Flash动画素材

资源摘要信息:"明月的祝福flash动画是为中秋节设计的一款Flash动画素材。它通过Flash技术展现了中秋节的明月祝福主题,给观众带来了节日的快乐气氛。Flash动画是一种流行的技术,它通过矢量图形和时间线实现流畅的动画效果,被广泛应用于网页设计、广告、游戏和视频制作等各个领域。Flash动画可以包含动作脚本(ActionScript),这是一种类似于JavaScript的编程语言,用于控制动画的交互性和复杂的逻辑。 这款名为'明月的祝福'的Flash动画,可能包含了中秋节的传统元素,如满月、玉兔、月饼和桂花等。中秋节是华人传统节日之一,通常在这个时候,人们会观赏满月,品尝月饼,与家人团聚,表达对远方亲人的思念之情。Flash动画可以被嵌入到网页中,或者制作成可以在各种设备上播放的SWF文件。 在使用这个动画素材时,文件名'flash8803.fla'表示这是一个Flash源文件,通常以.fla扩展名保存,这个文件包含了动画的原始工程文件,允许用户进行编辑和修改。而'flash8803.swf'是一个编译后的Flash播放文件,.swf扩展名表示这个文件可以在支持Flash插件的浏览器中直接播放。最后一个文件'重要建议.txt'可能是一个文本文件,包含了使用这个Flash动画素材时需要注意的事项或使用建议,如兼容性问题、使用限制等。 Flash技术虽然非常流行,但它在2020年12月31日之后被Adobe公司宣布正式停止支持,这意味着新的浏览器不再支持Flash内容。因此,对于新项目来说,设计师可能需要考虑使用HTML5、CSS3和JavaScript等现代技术来创建动画效果,以确保动画可以在未来的设备和浏览器上顺利运行。尽管如此,对于那些尚未升级的老系统和设备,Flash动画仍然有其存在的价值和必要性。" 资源摘要信息:"中秋节是中国的传统节日之一,代表着团圆和丰收。在这一天,人们赏月、吃月饼、挂灯笼,通过各种活动来庆祝。Flash动画以其独特的交互性和视觉效果,在表现节日气氛方面具有独特的优势。'明月的祝福'这一动画素材,无疑能够抓住中秋月圆夜的意境,为用户提供视觉上的享受和情感上的共鸣。 在IT行业,Flash技术曾是网页动画制作的标准之一,它通过ActionScript编程语言来控制动画的流程和用户的交云动。但是,随着技术的发展,HTML5等新技术逐渐取代了Flash在动画领域的地位。HTML5提供了更好的跨平台支持,更强的可访问性,以及更先进的安全性,这使得它成为了构建现代网页动画和应用的首选技术。对于设计师而言,了解和掌握HTML5及相关技术,比如Canvas API和SVG,对于适应行业变化和满足新兴平台的需求至关重要。 此外,由于Flash支持的终止,对于维护和更新旧有Flash内容的组织来说,将内容迁移到新的技术平台是一项挑战。这就需要通过工具和脚本对旧的Flash文件进行转换,或者完全重制动画内容。同时,在转换过程中,要考虑到动画的版权、设计风格和用户体验等因素,以确保转换后的内容能够尽可能地保留原始作品的意图和美感。 最后,考虑到'重要建议.txt'文件的内容,设计师在使用'明月的祝福'Flash动画时,应仔细阅读这份文档中的指导和说明,了解如何正确使用素材,避免可能的版权问题,确保动画素材能够适应不同的使用场景和需求。"
recommend-type

关系数据表示学习

关系数据卢多维奇·多斯桑托斯引用此版本:卢多维奇·多斯桑托斯。关系数据的表示学习机器学习[cs.LG]。皮埃尔和玛丽·居里大学-巴黎第六大学,2017年。英语。NNT:2017PA066480。电话:01803188HAL ID:电话:01803188https://theses.hal.science/tel-01803188提交日期:2018年HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaireUNIVERSITY PIERRE和 MARIE CURIE计算机科学、电信和电子学博士学院(巴黎)巴黎6号计算机科学实验室D八角形T HESIS关系数据表示学习作者:Ludovic DOS SAntos主管:Patrick GALLINARI联合主管:本杰明·P·伊沃瓦斯基为满足计算机科学博士学位的要求而提交的论文评审团成员:先生蒂埃里·A·退休记者先生尤尼斯·B·恩