这是matlab程序:prob=1-KLD^0.5/(2*trunc_len); if prob<0 prob=0; end,如何改写成python程序
时间: 2024-02-10 22:44:24 浏览: 99
您可以将matlab程序改写为以下python代码:
```
prob = 1 - KLD**0.5 / (2*trunc_len)
if prob < 0:
prob = 0
```
这里假设您已经定义了变量KLD和trunc_len,它们在python中的定义方式可能与matlab略有不同。
相关问题
逐行详细解释: void DstExistenceFusion::UpdateWithoutMeasurement(const std::string &sensor_id, double measurement_timestamp, double target_timestamp, double min_match_dist) { SensorObjectConstPtr camera_object = nullptr; if (common::SensorManager::Instance()->IsCamera(sensor_id)) { camera_object = track_ref_->GetSensorObject(sensor_id); UpdateToicWithoutCameraMeasurement(sensor_id, measurement_timestamp, min_match_dist); } SensorObjectConstPtr lidar_object = track_ref_->GetLatestLidarObject(); SensorObjectConstPtr camera_object_latest = track_ref_->GetLatestCameraObject(); SensorObjectConstPtr radar_object = track_ref_->GetLatestRadarObject(); if ((lidar_object != nullptr && lidar_object->GetSensorId() == sensor_id) || (camera_object_latest != nullptr && camera_object_latest->GetSensorId() == sensor_id) || (radar_object != nullptr && radar_object->GetSensorId() == sensor_id && lidar_object == nullptr && camera_object_latest == nullptr)) { Dst existence_evidence(fused_existence_.Name()); double unexist_factor = GetUnexistReliability(sensor_id); base::ObjectConstPtr obj = track_ref_->GetFusedObject()->GetBaseObject(); double dist_decay = ComputeDistDecay(obj, sensor_id, measurement_timestamp); double obj_unexist_prob = unexist_factor * dist_decay; existence_evidence.SetBba( {{ExistenceDstMaps::NEXIST, obj_unexist_prob}, {ExistenceDstMaps::EXISTUNKNOWN, 1 - obj_unexist_prob}}); // TODO(all) hard code for fused exist bba const double unexist_fused_w = 1.0; double min_match_dist_score = min_match_dist; // if (!sensor_manager->IsCamera(sensor_id)) { // min_match_dist_score = std::max(1 - min_match_dist / // options_.track_object_max_match_distance_, 0.0); // } ADEBUG << " before update exist prob: " << GetExistenceProbability() << " min_match_dist: " << min_match_dist << " min_match_dist_score: " << min_match_dist_score; fused_existence_ = fused_existence_ + existence_evidence * unexist_fused_w * (1 - min_match_dist_score); ADEBUG << " update without, EXIST prob: " << GetExistenceProbability() << " 1 - match_dist_score: " << 1 - min_match_dist_score << " sensor_id: " << sensor_id << " dist_decay: " << dist_decay << " track_id: " << track_ref_->GetTrackId(); } UpdateExistenceState(); }
这是一个名为DstExistenceFusion的类中的一个函数UpdateWithoutMeasurement。该函数的作用是在没有测量数据的情况下更新目标的存在状态。该函数接受四个参数,分别为传感器ID(sensor_id)、测量时间戳(measurement_timestamp)、目标时间戳(target_timestamp)和最小匹配距离(min_match_dist)。
首先,该函数通过传感器ID获取摄像头的SensorObject(SensorObjectConstPtr类型)。
然后,通过调用track_ref_对象的GetLatestLidarObject()、GetLatestCameraObject()和GetLatestRadarObject()函数,获取最新的激光雷达、摄像头和毫米波雷达的SensorObject(SensorObjectConstPtr类型)。
接下来,如果激光雷达、摄像头或毫米波雷达的SensorObject的SensorId与传入的sensor_id相同,则执行目标存在性融合操作。在目标存在性融合操作中,首先创建一个Dst类型的存在证据(existence_evidence),并设置其置信度。置信度的计算包括了未存在因子(unexist_factor)、距离衰减因子(dist_decay)和目标不存在的概率(obj_unexist_prob)。
然后,将existence_evidence与融合目标的存在证据(fused_existence_)进行合并,得到新的存在证据。在合并操作中,需要考虑到未存在因子的权重和最小匹配距离的得分。
最后,更新目标的存在状态并返回。
for i in range(len(states)): max_p[0][i] = start_p[i] * emit_p[i][obs[0]] path[i][0] = i for t in range(1, len(obs)): newpath = np.zeros((len(states), len(obs))) for y in range(len(states)): prob = -1 for y0 in range(len(states)): nprob = max_p[t-1][y0] * trans_p[y0][y] * emit_p[y][obs[t]] if nprob > prob: prob = nprob state = y0 # 记录路径 max_p[t][y] = prob for m in range(t): newpath[y][m] = path[state][m] newpath[y][t] = y path = newpath max_prob = -1 path_state = 0给这段代码加上详细注释
# 定义变量
states = ['Rainy', 'Sunny'] # 可能的状态
obs = ['walk', 'shop', 'clean'] # 观测序列
start_p = [0.6, 0.4] # 初始概率
trans_p = [[0.7, 0.3], [0.4, 0.6]] # 转移概率
emit_p = [[0.1, 0.4, 0.5], [0.6, 0.3, 0.1]] # 发射概率
# 初始化 max_p 和 path
max_p = np.zeros((len(obs), len(states)))
path = np.zeros((len(states), len(obs)))
# 初始化 max_p 和 path 的第一列
for i in range(len(states)):
max_p[0][i] = start_p[i] * emit_p[i][obs[0]]
path[i][0] = i
# 遍历观测序列
for t in range(1, len(obs)):
# 创建新路径
newpath = np.zeros((len(states), len(obs)))
# 遍历可能的状态
for y in range(len(states)):
prob = -1
# 遍历上一时刻的所有状态
for y0 in range(len(states)):
# 计算概率
nprob = max_p[t-1][y0] * trans_p[y0][y] * emit_p[y][obs[t]]
# 如果概率更大,更新 prob 和 state,并记录路径
if nprob > prob:
prob = nprob
state = y0
max_p[t][y] = prob
for m in range(t):
newpath[y][m] = path[state][m]
# 记录当前状态
newpath[y][t] = y
# 更新路径和最大概率
path = newpath
max_prob = -1
path_state = 0
阅读全文