dqn算法基础代码matlab
时间: 2023-11-07 10:05:52 浏览: 158
你好!以下是一个使用DQN算法实现的基础代码示例(MATLAB):
```matlab
% 导入依赖库
import rl.agents.dqn.*
import rl.util.*
% 创建环境
env = rlPredefinedEnv("BasicGridWorld");
% 创建DQN网络
inputSize = prod(env.ObservationInfo.Dimension);
numActions = numel(env.ActionInfo);
layers = [
imageInputLayer([inputSize 1 1],'Normalization','none','Name','state')
fullyConnectedLayer(100,'Name','CriticStateFC1')
reluLayer('Name','CriticRelu1')
fullyConnectedLayer(50,'Name','CriticStateFC2')];
criticNetwork = [
layers
fullyConnectedLayer(numActions,'Name','output')];
criticOpts = rlRepresentationOptions('LearnRate',1e-03,'GradientThreshold',1);
% 创建DQN代理
agentOpts = rlDQNAgentOptions(...
'SampleTime',1,...
'TargetUpdateMethod',"periodic",...
'TargetUpdateFrequency',4,...
'ExperienceBufferLength',100000,...
'DiscountFactor',0.99,...
'MiniBatchSize',48);
agentOpts.EpsilonGreedyExploration.EpsilonDecay = 1e-4;
agent = rlDQNAgent(criticNetwork,env,agentOpts);
% 参数配置
maxEpisodes = 1000;
maxSteps = ceil(env.MaxStep/maxEpisodes);
% 训练代理
trainingStats = train(agent,env,maxEpisodes,maxSteps);
% 测试代理
envTest = rlPredefinedEnv("BasicGridWorld");
simOptions = rlSimulationOptions('MaxSteps',maxSteps);
experiences = sim(envTest,agent,simOptions);
% 绘制训练曲线
plot(trainingStats.EpisodeReward)
ylabel('Total Reward')
xlabel('Episode')
```
希望这个基础代码能帮到你!如果还有其他问题,请随时提问。
阅读全文