pytorch实现vgg
时间: 2023-11-12 16:00:35 浏览: 143
好的,关于pytorch实现vgg,可以按照以下步骤进行:
1. 导入必要的库和模块:
```python
import torch
import torch.nn as nn
```
2. 定义VGG网络的结构:
```python
class VGG(nn.Module):
def __init__(self, features, num_classes=1000, init_weights=True):
super(VGG, self).__init__()
self.features = features
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, num_classes),
)
if init_weights:
self._initialize_weights()
def forward(self, x):
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
```
3. 定义VGG网络的不同层:
```python
cfgs = {
'A': [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'B': [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M'],
'D': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512, 'M'],
'E': [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512, 'M'],
}
def make_layers(cfg, batch_norm=False):
layers = []
in_channels = 3
for v in cfg:
if v == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
conv2d = nn.Conv2d(in_channels, v, kernel_size=3, padding=1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(v), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = v
return nn.Sequential(*layers)
```
4. 定义不同版本的VGG网络:
```python
def vgg11(pretrained=False, **kwargs):
if pretrained:
kwargs['init_weights'] = False
model = VGG(make_layers(cfgs['A']), **kwargs)
if pretrained:
model.load_state_dict(torch.load('vgg11-bbd30ac9.pth'))
return model
def vgg13(pretrained=False, **kwargs):
if pretrained:
kwargs['init_weights'] = False
model = VGG(make_layers(cfgs['B']), **kwargs)
if pretrained:
model.load_state_dict(torch.load('vgg13-c768596a.pth'))
return model
def vgg16(pretrained=False, **kwargs):
if pretrained:
kwargs['init_weights'] = False
model = VGG(make_layers(cfgs['D']), **kwargs)
if pretrained:
model.load_state_dict(torch.load('vgg16-397923af.pth'))
return model
def vgg19(pretrained=False, **kwargs):
if pretrained:
kwargs['init_weights'] = False
model = VGG(make_layers(cfgs['E']), **kwargs)
if pretrained:
model.load_state_dict(torch.load('vgg19-dcbb9e9d.pth'))
return model
```
5. 加载预训练模型:
```python
model = vgg16(pretrained=True)
```
6. 对输入数据进行预处理:
```python
from torchvision import transforms
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
```
7. 对输入数据进行推理:
```python
from PIL import Image
img = Image.open('test.jpg')
img = transform(img)
img = img.unsqueeze(0)
output = model(img)
```
阅读全文