python实现熵权topsis
时间: 2024-08-16 13:08:40 浏览: 124
在Python中,Topsis (Technique for Order of Preference by Similarity to Ideal Solution)是一种决策分析方法,用于评估多个方案的相对优势。熵权法通常用于确定每个评价指标的重要程度,基于信息熵来量化不确定性。
以下是使用Python实现Entropy Weighted Topsis的基本步骤:
1. 导入所需库:
```python
import numpy as np
from scipy.stats import entropy
```
2. 定义函数计算熵值:
```python
def calculate_entropy(values):
prob = values / np.sum(values)
return entropy(prob)
```
3. 准备矩阵(方案和指标):
```python
criteria = [[...]], # 矩阵,其中每一行代表一个指标,列是所有方案的得分
weights = [...], # 权重列表,对应于criteria的列
```
4. 计算熵权重:
```python
entropy_values = [calculate_entropy(column) for column in criteria]
entropies = np.array(entropy_values)
normalized_weights = weights / entropies
```
5. 计算理想解(最小化)和反理想解(最大化):
```python
ideal_solution = np.min(criteria, axis=0)
anti_ideal_solution = np.max(criteria, axis=0)
```
6. 计算偏离度和偏好值:
```python
deviation = criteria - ideal_solution
preference = normalized_weights * deviation
```
7. 汇总偏好值,计算综合得分:
```python
comparative_solutions = preference + anti_ideal_solution
scores = comparative_solutions.sum(axis=1)
```
8. 找出优胜者:
```python
best_index = np.argmax(scores)
```
阅读全文