原理循环码的编码和译码并仿真
时间: 2023-06-15 20:05:02 浏览: 49
循环码是一种具有循环特性的编码方式,常用于纠错通信中。其编码和译码原理如下:
1. 编码原理:
首先将待编码的信息位序列看作一个多项式,例如:101101,则对应的多项式为x^5 + x^4 + x^2 + x^0。然后,选定一个生成多项式g(x),其次数为n,将待编码信息位序列左移n位,用生成多项式g(x)除以左移后的多项式,得到的余数就是校验位序列。将校验位序列添加到信息位序列后面,得到循环码。
2. 译码原理:
译码时,将接收到的循环码看作一个多项式,然后用生成多项式g(x)除以接收到的多项式,若余数为0,则说明接收到的码没有错误;若余数不为0,则说明接收到的码有错误,余数对应的位就是出错的位。根据出错位的位置,将该位取反,即可纠正错误。
3. 仿真:
可以使用MATLAB等工具进行循环码的编码和译码仿真。编码仿真可以通过生成多项式g(x)和待编码信息位序列,利用MATLAB中的polydiv函数进行模2除法,得到循环码。译码仿真可以通过接收到的循环码和生成多项式g(x),同样利用MATLAB中的polydiv函数进行模2除法,得到余数。若余数为0,则说明接收到的码没有错误;若余数不为0,则说明接收到的码有错误,根据余数对应的位进行取反即可。
相关问题
然后老师有一个具体的要求,是利用MATLAB实现通信原理循环码的编码和译码并仿真
好的,通信原理中循环码是一种重要的编码技术,可以提高传输的可靠性。在MATLAB中,可以使用通信工具箱中的函数实现循环码的编码和译码,并进行仿真。以下是一个简单的循环码编码和译码的示例代码:
```matlab
% 循环码编码
n = 7; % 码字长度
k = 4; % 信息位数
msg = [1 0 1 1]; % 待编码的信息位
genpoly = cyclpoly(n, k); % 生成循环码的生成多项式
code = encode(msg, n, k, 'cyclic', genpoly); % 编码得到码字
% 循环码译码
rxcode = [1 0 1 1 0 1 0]; % 接收到的码字
decoded = decode(rxcode, n, k, 'cyclic', genpoly); % 译码得到信息位
% 仿真比特误码率
EbNo = 0:2:10; % 信噪比范围
for i = 1:length(EbNo)
snr = EbNo(i) + 10*log10(k/n); % 计算信噪比
ber(i) = bercoding(code, 'binary', snr); % 计算比特误码率
end
semilogy(EbNo, ber); % 绘制比特误码率曲线
xlabel('EbNo (dB)');
ylabel('BER');
```
在上面的示例代码中,`cyclpoly` 函数用于生成循环码的生成多项式,`encode` 函数用于对信息位进行循环码编码,`decode` 函数用于对接收到的码字进行译码,`bercoding` 函数用于计算比特误码率。
需要注意的是,循环码的性能受到生成多项式的选择和编码方式的影响,需要根据具体的应用场景进行优化选择。
使用Verilog语言完成polar码编码与SC译码仿真,并给出testbench,
以下是Verilog语言实现polar码编码的代码:
```verilog
module polar_encoder(input clk, input rst, input [7:0] data_in, output reg [7:0] encoded_data);
parameter N = 8; // 符号长度
parameter K = 4; // 信息位长度
parameter L = 3; // 循环次数
parameter F = 2; // 冻结位长度
reg [7:0] u [0:N-1];
reg [7:0] x [0:N-1];
reg [7:0] y [0:N-1];
integer i, j, t, m;
integer bit_reverse_table[N];
always @(posedge clk) begin
if (rst) begin
for (i = 0; i < N; i = i + 1) begin
u[i] = 0;
x[i] = 0;
y[i] = 0;
end
for (i = 0; i < N; i = i + 1) begin
bit_reverse_table[i] = i;
end
for (i = 0; i < N/2; i = i + 1) begin
bit_reverse_table[i] = bit_reverse_table[i] ^ bit_reverse_table[N-i-1];
bit_reverse_table[N-i-1] = bit_reverse_table[i] ^ bit_reverse_table[N-i-1];
bit_reverse_table[i] = bit_reverse_table[i] ^ bit_reverse_table[N-i-1];
end
end else begin
// 构造输入信息
for (i = 0; i < K; i = i + 1) begin
u[i] = data_in[i];
end
// 构造冻结位
for (i = K; i < N; i = i + 1) begin
u[i] = 0;
end
// 构造输入序列
for (i = 0; i < N; i = i + 1) begin
x[bit_reverse_table[i]] = u[i];
end
// 构造码字
for (t = 0; t < L; t = t + 1) begin
m = 1 << t;
for (i = 0; i < N; i = i + 2*m) begin
for (j = 0; j < m; j = j + 1) begin
y[i+j] = x[i+j] ^ x[i+j+m];
y[i+j+m] = x[i+j+m];
end
end
for (i = 0; i < N; i = i + 1) begin
x[i] = y[i];
end
end
// 构造输出码字
for (i = 0; i < N; i = i + 1) begin
encoded_data[i] = x[bit_reverse_table[i]];
end
end
end
endmodule
```
以下是Verilog语言实现SC译码的代码:
```verilog
module polar_sc_decoder(input clk, input rst, input [7:0] received_data, output reg [7:0] decoded_data);
parameter N = 8; // 符号长度
parameter K = 4; // 信息位长度
parameter L = 3; // 循环次数
parameter F = 2; // 冻结位长度
reg [7:0] u_hat [0:N-1];
reg [7:0] u [0:N-1];
reg [7:0] x [0:N-1];
reg [7:0] y [0:N-1];
reg [7:0] llr [0:N-1];
reg [7:0] path_metric [0:2**(L+1)-1][0:N-1];
reg [7:0] path_history [0:2**(L+1)-1][0:L-1];
reg [1:0] path_index [0:L-1];
integer i, j, t, m, s;
integer bit_reverse_table[N];
integer min_metric_index;
integer path_index_temp;
always @(posedge clk) begin
if (rst) begin
for (i = 0; i < N; i = i + 1) begin
u_hat[i] = 0;
u[i] = 0;
x[i] = 0;
y[i] = 0;
llr[i] = 0;
end
for (i = 0; i < 2**(L+1); i = i + 1) begin
for (j = 0; j < N; j = j + 1) begin
path_metric[i][j] = 0;
end
for (j = 0; j < L; j = j + 1) begin
path_history[i][j] = 0;
end
end
for (i = 0; i < L; i = i + 1) begin
path_index[i] = 0;
end
for (i = 0; i < N; i = i + 1) begin
bit_reverse_table[i] = i;
end
for (i = 0; i < N/2; i = i + 1) begin
bit_reverse_table[i] = bit_reverse_table[i] ^ bit_reverse_table[N-i-1];
bit_reverse_table[N-i-1] = bit_reverse_table[i] ^ bit_reverse_table[N-i-1];
bit_reverse_table[i] = bit_reverse_table[i] ^ bit_reverse_table[N-i-1];
end
end else begin
// 构造输入符号
for (i = 0; i < N; i = i + 1) begin
u_hat[i] = received_data[i];
end
// 构造输入信息
for (i = 0; i < K; i = i + 1) begin
u[i] = u_hat[i];
end
// 构造冻结位
for (i = K; i < N; i = i + 1) begin
u[i] = 0;
end
// 构造输入序列
for (i = 0; i < N; i = i + 1) begin
x[bit_reverse_table[i]] = u_hat[i];
end
// 计算LLR
for (i = 0; i < N; i = i + 1) begin
if (u_hat[i] == 1) begin
llr[i] = -128;
end else begin
llr[i] = 128;
end
end
// 构造码字
for (t = 0; t < L; t = t + 1) begin
m = 1 << t;
for (i = 0; i < N; i = i + 2*m) begin
for (j = 0; j < m; j = j + 1) begin
y[i+j] = x[i+j] ^ x[i+j+m];
y[i+j+m] = x[i+j+m];
end
end
for (i = 0; i < N; i = i + 1) begin
x[i] = y[i];
end
end
// 构造输出信息
for (i = 0; i < K; i = i + 1) begin
decoded_data[i] = x[i];
end
// 计算路径度量
for (i = 0; i < N; i = i + 1) begin
path_metric[0][i] = llr[i];
end
for (t = 0; t < L; t = t + 1) begin
m = 1 << t;
for (s = 0; s < m; s = s + 1) begin
for (i = 0; i < 2**t; i = i + 1) begin
for (j = 0; j < m; j = j + 1) begin
path_metric[(i*(2*m))+j+s+m][i*(2*m)+j] = path_metric[(i*(2*m))+j+s][i*(2*m)+j] + path_metric[(i*(2*m))+j+s][i*(2*m)+j+m];
path_metric[(i*(2*m))+j+s][i*(2*m)+j+m] = path_metric[(i*(2*m))+j+s][i*(2*m)+j] - path_metric[(i*(2*m))+j+s][i*(2*m)+j+m];
end
end
end
end
// 选择最优路径
for (i = 0; i < 2**L; i = i + 1) begin
path_metric[(2**L)+i][0] = path_metric[i*(2**(L-1))][0];
path_history[(2**L)+i][0] = i;
end
for (t = 1; t < L; t = t + 1) begin
for (i = 0; i < 2**(L-t); i = i + 1) begin
min_metric_index = 0;
for (j = 0; j < 2; j = j + 1) begin
if (path_metric[(i*2+j)*(2**t)][t] < path_metric[(i*2+min_metric_index)*(2**t)][t]) begin
min_metric_index = j;
end
end
path_metric[(i+2**(L-t))*(2**t)][t] = path_metric[(i*2+min_metric_index)*(2**t)][t];
for (j = 0; j < t; j = j + 1) begin
path_history[(i+2**(L-t))*(2**t)][j] = path_history[(i*2+min_metric_index)*(2**t)][j];
end
path_history[(i+2**(L-t))*(2**t)][t-1] = min_metric_index;
end
end
min_metric_index = 0;
for (i = 0; i < 2**L; i = i + 1) begin
if (path_metric[(2**L)+i][N-1] < path_metric[(2**L)+min_metric_index][N-1]) begin
min_metric_index = i;
end
end
for (i = 0; i < L; i = i + 1) begin
path_index[i] = path_history[(2**L)+min_metric_index][i];
end
// 译码
for (i = 0; i < N; i = i + 1) begin
u[i] = u_hat[i];
end
for (t = L-1; t >= 0; t = t - 1) begin
m = 1 << t;
for (i = 0; i < 2**t; i = i + 1) begin
path_index_temp = path_index[t*(2**t)+i];
for (j = 0; j < m; j = j + 1) begin
u[i*(2*m)+j+path_index_temp*m] = u[i*(2*m)+j] ^ u[i*(2*m)+j+m];
u[i*(2*m)+j+m+path_index_temp*m] = u[i*(2*m)+j+m];
end
end
end
// 构造输出序列
for (i = 0; i < N; i = i + 1) begin
decoded_data[i] = u[bit_reverse_table[i]];
end
end
end
endmodule
```
以下是Verilog语言实现polar码编码与SC译码的testbench代码:
```verilog
module polar_testbench();
parameter N = 8; // 符号长度
parameter K = 4; // 信息位长度
parameter L = 3; // 循环次数
parameter F = 2; // 冻结位长度
reg clk;
reg rst;
reg [7:0] data_in;
wire [7:0] encoded_data;
wire [7:0] received_data;
wire [7:0] decoded_data;
integer i, j;
polar_encoder encoder(clk, rst, data_in, encoded_data);
polar_sc_decoder decoder(clk, rst, received_data, decoded_data);
initial begin
clk = 0;
rst = 1;
data_in = 0;
#100;
rst = 0;
end
always #10 clk = ~clk;
always @(posedge clk) begin
if (~rst) begin
data_in = data_in + 1;
end
end
initial begin
#100;
for (i = 0; i < 2**K; i = i + 1) begin
data_in = i;
#10;
$display("data_in = %d, encoded_data = ", data_in);
for (j = 0; j < N; j = j + 1) begin
$write("%d ", encoded_data[j]);
end
$write(", received_data = ");
for (j = 0; j < N; j = j + 1) begin
if ($random % 2 == 0) begin
received_data[j] = encoded_data[j];
end else begin
received_data[j] = ~encoded_data[j];
end
$write("%d ", received_data[j]);
end
$write(", decoded_data = ");
for (j = 0; j < K; j = j + 1) begin
$write("%d ", decoded_data[j]);
end
$display("");
end
#10;
$finish;
end
endmodule
```
相关推荐











