train_loader = torch.utils.data.DataLoader( train_set, batch_size=args.batch_size, num_workers=args.workers, pin_memory =True, shuffle=True)
时间: 2024-04-20 17:25:14 浏览: 238
这段代码创建了一个用于训练的数据加载器(DataLoader),用于从训练集(train_set)中加载数据并生成小批量的数据样本。
参数说明:
- train_set: 训练集数据集对象,包含了训练数据样本。
- batch_size: 每个小批量中的样本数量。
- num_workers: 加载数据时使用的线程数。
- pin_memory: 是否将加载的数据存储在固定的内存中,以提高数据读取效率(通常在使用GPU时设置为True)。
- shuffle: 是否对训练集进行随机重排,以使每个epoch中的样本顺序随机化。
通过使用这个数据加载器,可以在训练过程中方便地迭代获取小批量的训练样本。每次迭代获取的样本都是经过shuffle和batch处理后的,并且可以利用多线程加速数据加载的过程。
相关问题
transform = transforms.Compose([Normalization()]) train_set = SpecklesDataset(csv_file='E:\StrainNet\Dataset\Speckle dataset 1.0\Train_annotations.csv', root_dir='E:\StrainNet\Dataset/Speckle dataset 1.0\Reference_speckle_frames\Train_Data', transform = transform) test_set = SpecklesDataset(csv_file='E:\StrainNet\Dataset\Speckle dataset 1.0\Test_annotations.csv', root_dir='E:\StrainNet\Dataset\Speckle dataset 1.0\Reference_speckle_frames\Test_Data', transform = transform) print('{} samples found, {} train samples and {} test samples '.format(len(test_set)+len(train_set), len(train_set), len(test_set))) train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size, num_workers=args.workers, pin_memory =True, shuffle=True) val_loader = torch.utils.data.DataLoader(test_set, batch_size=args.batch_size, num_workers=args.workers, pin_memory=True, shuffle=True) # create model
这段代码是为了创建数据集,并构建相应的数据加载器。其中,`transforms.Compose` 是一个用于组合多个数据变换操作的类,`Normalization()` 是其中的一个数据变换操作,用于对输入的数据进行归一化处理。`SpecklesDataset` 是一个自定义的数据集类,用于读取 CSV 文件并加载图像数据。在这个代码段中,分别创建了训练集和测试集,并使用 `torch.utils.data.DataLoader` 创建了训练数据加载器和测试数据加载器。在创建加载器时,使用了 `batch_size`、`num_workers`、`pin_memory` 和 `shuffle` 等参数来控制批次大小、工作进程数量、是否将数据加载到 GPU 内存中以及是否打乱数据的顺序。最后,该代码段还创建了一个模型。
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=args.batch_size, shuffle=True)
这是一个关于 PyTorch 的问题,train_loader 是一个数据加载器,用于将训练数据集分批次加载到模型中进行训练。其中,train_dataset 是一个数据集对象,args.batch_size 是批次大小,shuffle=True 表示每个 epoch 都打乱数据集的顺序。
阅读全文