# 测试模型 from torchsummary import summary model = AutoEncoder().to(device) summary(model, (1,28,28)) x = torch.randn(1,1,28,28).to(device) out = model(x) # out=out.cpu().numpy() # RuntimeError:不能在需要grad的张量上调用numpy()。请改用tensor.detach().numpy() # out=out.detach().numpy() #不能将cuda:0设备类型张量转换为numpy。首先使用tensor.cpu()将张量复制到主机内存中。 out = out.detach().cpu().numpy() # 正确,分离出来,不带梯度,传到cpu上再调用numpy() print(out, out.shape)
时间: 2023-06-17 13:07:17 浏览: 296
这段代码是使用torchsummary库对AutoEncoder模型进行了打印输出,以便查看模型中每一层的参数数量和模型总参数数量。接着使用模型对一个28x28的随机张量进行了前向传播,得到了输出out。由于out是在GPU上计算的张量,所以不能直接使用numpy()方法将其转换为numpy数组,需要先使用detach()方法将其与计算图分离,然后再将其转移到CPU上再使用numpy()方法转换。最后输出了out的值和形状。
相关问题
def forward(self, x): x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = self.conv4(x) x = self.conv5(x) mu = self.conv_mu(x) # 输出Z的均值 log_var = self.conv_log_var(x) # 获得Z的对数方差 x = self.sample(mu, log_var) return x, mu, log_var
这段代码看起来是一个基于卷积神经网络的自编码器(Autoencoder),其中包括了一个编码器和一个解码器。自编码器是一种无监督学习模型,可以将输入数据压缩成低维编码,并从编码中重构出原始数据。
在这个自编码器中,输入数据 x 经过一系列的卷积层(conv1-conv5)进行特征提取和降维,并最终输出一个低维编码 Z。具体来说,x 经过每一层卷积后的特征图都会比输入数据 x 小,这样就实现了对输入数据的降维。最后,编码器输出 Z 的均值 mu 和对数方差 log_var。
然后,通过调用之前定义的 sample 函数,从 Z 的分布中采样得到一个编码,作为解码器的输入,解码器将这个编码解码成输出数据。最终,这个自编码器会同时最小化重构误差和 KL 散度,以使得编码器和解码器的输出更加接近原始数据,从而实现数据的压缩和重构。
# 创建文件夹 sample_dir = 'AutoEncoder' if not os.path.exists(sample_dir): os.makedirs(sample_dir) model = AutoEncoder().to(device) criterion = nn.MSELoss() optimizer = torch.optim.Adam(model.parameters(), lr= learning_rate, weight_decay=1e-5) Train_Loss = [] # 训练编码-解码的性能,损失即与原图像求均方误差 for epoch in range(num_epochs): model.train() for img, _ in dataloader: img = Variable(img).to(device) output = model(img) loss = criterion(output, img) optimizer.zero_grad() loss.backward() optimizer.step() Train_Loss.append(loss.item()) #如果是标量则直接用.item()提取出来,存放的位置在CPU print('epoch [{}/{}], loss:{:.4f}'.format(epoch+1, num_epochs, loss.item())) save_image(output, os.path.join(sample_dir, 'sampled-{}.png'.format(epoch+1))) torch.save(model.state_dict(), './conv_autoencoder.pth')
这段代码实现了一个自编码器的训练,具体可以分为以下几个步骤:
1.创建一个名为 AutoEncoder 的类,该类继承自 nn.Module,其中定义了编码器和解码器部分的网络结构。
2.定义损失函数为均方误差(MSE)损失。
3.定义优化器为 Adam 优化器,学习率为 learning_rate,L2 正则化系数为 1e-5。
4.定义一个空列表 Train_Loss,用于存储每个 epoch 的训练损失。
5.开始进行训练,循环 num_epochs 次。
6.将模型设为训练模式,即 model.train()。
7.从数据加载器 dataloader 中加载一个批次的图像数据 img。
8.将图像数据 img 转为 PyTorch 变量并放到 GPU 上。
9.将图像输入自编码器模型,得到输出 output。
10.计算输出 output 和原始图像 img 之间的 MSE 损失,并将梯度清零。
11.反向传播计算梯度并更新模型参数。
12.将本次训练的损失 loss 存储到 Train_Loss 列表中。
13.每个 epoch 完成后,输出本次训练的 epoch 数、总 epoch 数、训练损失 loss。
14.将输出的图像保存到样本目录 sample_dir 中。
15.将训练好的模型参数保存到 conv_autoencoder.pth 文件中。
总体来说,这段代码实现了一个自编码器的训练过程,其中的关键步骤包括定义模型、损失函数和优化器,以及训练过程中的前向传播、反向传播和参数更新。
阅读全文