@function def train_embedder(self,x, opt): with GradientTape() as tape: h = self.embedder(x) h_hat_supervised = self.supervisor(h) generator_loss_supervised = self._mse(h[:, 1:, :], h_hat_supervised[:, 1:, :]) x_tilde = self.autoencoder(x) embedding_loss_t0 = self._mse(x, x_tilde) e_loss = 10 * sqrt(embedding_loss_t0) + 0.1 * generator_loss_supervised var_list = self.embedder.trainable_variables + self.recovery.trainable_variables gradients = tape.gradient(e_loss, var_list) opt.apply_gradients(zip(gradients, var_list)) return sqrt(embedding_loss_t0)
时间: 2024-04-11 19:30:30 浏览: 138
这段代码定义了一个名为 `train_embedder` 的方法,用于训练 Embedder 模型。
该方法接受输入数据 `x` 和优化器 `opt` 作为参数。在方法内部,使用 `GradientTape` 上下文管理器来计算损失函数和梯度。
首先,通过调用嵌入器模型 `self.embedder` 对输入数据 `x` 进行嵌入操作,得到嵌入向量 `h`。然后,将嵌入向量 `h` 输入到 Supervisor 模型 `self.supervisor` 中,得到 Supervisor 的预测结果 `h_hat_supervised`。
接下来,计算生成器的监督损失 `generator_loss_supervised`,这里使用了均方误差(MSE)作为损失函数。损失函数计算的是嵌入向量 `h` 和 Supervisor 预测结果 `h_hat_supervised` 在时间步 t=1 及之后的差异。
然后,通过调用自编码器模型 `self.autoencoder` 对输入数据 `x` 进行重构,得到重构后的数据 `x_tilde`。然后,计算重构损失 `embedding_loss_t0`,这里同样使用了均方误差(MSE)作为损失函数。
接着,将重构损失 `embedding_loss_t0` 进行平方根处理,并乘以一个系数 10,以及将生成器的监督损失 `generator_loss_supervised` 乘以 0.1,得到总的损失 `e_loss`。
然后,将可训练变量 `self.embedder.trainable_variables` 和 `self.recovery.trainable_variables` 组合成一个列表 `var_list`,并使用梯度带(GradientTape)计算 `e_loss` 对于这些变量的梯度。
最后,通过调用优化器 `opt` 的 `apply_gradients` 方法,将梯度应用到变量上进行优化。最后返回重构损失的平方根作为结果。
总体来说,这个方法的作用是训练 Embedder 模型,通过最小化重构损失和生成器的监督损失来优化模型的嵌入能力。
阅读全文