for _ in tqdm(range(train_steps), desc='Supervised network training'): X_ = next(synth.get_batch_data(stock_data, n_windows=len(stock_data))) step_g_loss_s = synth.train_supervisor(X_, supervisor_opt) generator_opt = Adam(learning_rate=learning_rate) embedder_opt = Adam(learning_rate=learning_rate) discriminator_opt = Adam(learning_rate=learning_rate) step_g_loss_u = step_g_loss_s = step_g_loss_v = step_e_loss_t0 = step_d_loss = 0

时间: 2024-04-11 19:30:18 浏览: 23
这段代码是一个训练过程的示例,用于训练监督器网络。让我逐步解释这段代码的功能和实现方式。 首先,使用`tqdm`库创建一个进度条,用于显示训练的进度。`train_steps`表示训练的总步数。 在一个循环中,迭代指定次数(`train_steps`),以下是每次迭代的步骤: 1. 调用`synth.get_batch_data`方法获取批量数据(`X_`)。这个方法可能在之前的代码中定义了,用于从`stock_data`中获取指定数量(`n_windows=len(stock_data)`)的批量数据。 2. 调用`synth.train_supervisor(X_, supervisor_opt)`方法,使用获取的批量数据来训练监督器网络。这个方法可能在之前的代码中定义了,用于执行一次监督器网络的训练,并返回相应的损失值(`step_g_loss_s`)。 3. 将监督器网络的损失值(`step_g_loss_s`)赋值给变量`step_g_loss_s`。 接着,定义了三个Adam优化器(`generator_opt`、`embedder_opt`和`discriminator_opt`),分别用于训练生成器、嵌入器和判别器网络。 最后,定义了一些变量(`step_g_loss_u`、`step_g_loss_s`、`step_g_loss_v`、`step_e_loss_t0`和`step_d_loss`)并将它们初始化为0。 需要注意的是,这段代码缺少了一些必要的引入语句和类定义,可能需要补充相关代码才能完整运行。
相关问题

synth = TimeGAN(model_parameters=gan_args, hidden_dim=24, seq_len=seq_len, n_seq=n_seq, gamma=1) autoencoder_opt = Adam(learning_rate=learning_rate) for _ in tqdm(range(train_steps), desc='Emddeding network training'): X_ = next(synth.get_batch_data(stock_data, n_windows=len(stock_data))) step_e_loss_t0 = synth.train_autoencoder(X_, autoencoder_opt) supervisor_opt = Adam(learning_rate=learning_rate) for _ in tqdm(range(train_steps), desc='Supervised network training'): X_ = next(synth.get_batch_data(stock_data, n_windows=len(stock_data))) step_g_loss_s = synth.train_supervisor(X_, supervisor_opt) generator_opt = Adam(learning_rate=learning_rate) embedder_opt = Adam(learning_rate=learning_rate) discriminator_opt = Adam(learning_rate=learning_rate) step_g_loss_u = step_g_loss_s = step_g_loss_v = step_e_loss_t0 = step_d_loss = 0

这段代码是一个训练过程的示例,使用了之前定义的`TimeGAN`类来训练模型。让我逐步解释这段代码的功能和实现方式。 首先,创建一个`TimeGAN`对象,命名为`synth`,并传入相应的参数。 然后,定义一个Adam优化器(`autoencoder_opt`),用于训练自编码器部分的网络。 在一个循环中,迭代指定次数(`train_steps`),通过调用`synth.get_batch_data`方法获取批量数据(`X_`),并使用这些数据来训练自编码器模型(`synth.train_autoencoder(X_, autoencoder_opt)`)。 接着,定义了另外两个Adam优化器(`supervisor_opt`和`generator_opt`),用于训练监督器和生成器部分的网络。 在另一个循环中,迭代指定次数(`train_steps`),通过调用`synth.get_batch_data`方法获取批量数据(`X_`),并使用这些数据来训练监督器模型(`synth.train_supervisor(X_, supervisor_opt)`)。 最后,定义了三个Adam优化器(`generator_opt`、`embedder_opt`和`discriminator_opt`),用于训练生成器、嵌入器和判别器部分的网络。 此外,代码中还定义了一些变量(`step_g_loss_u`、`step_g_loss_s`、`step_g_loss_v`、`step_e_loss_t0`和`step_d_loss`)并将它们初始化为0。 这段代码展示了一个训练过程的示例,但是缺少了一些必要的引入语句和类定义,可能需要补充相关代码才能完整运行。

如何查看 fasttext.train_supervised 训练出的模型的具体参数

要查看 fasttext.train_supervised 训练出的模型的具体参数,你可以使用以下方法: 1. 使用 `model.get_args()` 方法:这个方法可以返回训练模型时使用的参数及其对应的值。例如: ```python import fasttext model = fasttext.train_supervised('train.txt') args = model.get_args() print(args) ``` 这将打印出训练模型时使用的参数及其对应的值。 2. 直接访问模型对象的属性:训练模型后,你可以直接访问模型对象的属性来获取具体的参数值。例如: ```python import fasttext model = fasttext.train_supervised('train.txt') print(model.lr) # 学习率 print(model.dim) # 特征向量的维度 print(model.epoch) # 迭代次数 # 其他参数... ``` 你可以根据需要访问模型对象的不同属性来获取相应的参数值。 这些方法可以帮助你查看 fasttext.train_supervised 训练出的模型的具体参数。

相关推荐

def define_gan(self): self.generator_aux=Generator(self.hidden_dim).build(input_shape=(self.seq_len, self.n_seq)) self.supervisor=Supervisor(self.hidden_dim).build(input_shape=(self.hidden_dim, self.hidden_dim)) self.discriminator=Discriminator(self.hidden_dim).build(input_shape=(self.hidden_dim, self.hidden_dim)) self.recovery = Recovery(self.hidden_dim, self.n_seq).build(input_shape=(self.hidden_dim, self.hidden_dim)) self.embedder = Embedder(self.hidden_dim).build(input_shape=(self.seq_len, self.n_seq)) X = Input(shape=[self.seq_len, self.n_seq], batch_size=self.batch_size, name='RealData') Z = Input(shape=[self.seq_len, self.n_seq], batch_size=self.batch_size, name='RandomNoise') # AutoEncoder H = self.embedder(X) X_tilde = self.recovery(H) self.autoencoder = Model(inputs=X, outputs=X_tilde) # Adversarial Supervise Architecture E_Hat = self.generator_aux(Z) H_hat = self.supervisor(E_Hat) Y_fake = self.discriminator(H_hat) self.adversarial_supervised = Model(inputs=Z, outputs=Y_fake, name='AdversarialSupervised') # Adversarial architecture in latent space Y_fake_e = self.discriminator(E_Hat) self.adversarial_embedded = Model(inputs=Z, outputs=Y_fake_e, name='AdversarialEmbedded') #Synthetic data generation X_hat = self.recovery(H_hat) self.generator = Model(inputs=Z, outputs=X_hat, name='FinalGenerator') # Final discriminator model Y_real = self.discriminator(H) self.discriminator_model = Model(inputs=X, outputs=Y_real, name="RealDiscriminator") # Loss functions self._mse=MeanSquaredError() self._bce=BinaryCrossentropy()

最新推荐

recommend-type

android手机应用源码Imsdroid语音视频通话源码.rar

android手机应用源码Imsdroid语音视频通话源码.rar
recommend-type

营销计划汇报PPT,市场品牌 推广渠道 产品 营销策略tbb.pptx

营销计划汇报PPT,市场品牌 推广渠道 产品 营销策略tbb.pptx
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

解释这行代码 c = ((double)rand() / RAND_MAX) * (a + b - fabs(a - b)) + fabs(a - b);

这行代码的作用是随机生成一个浮点数,范围在 a 和 b 之间(包括 a 和 b)。 其中,`rand()` 函数是 C 语言标准库中的一个函数,用于生成一个伪随机整数。`RAND_MAX` 是一个常量,它表示 `rand()` 函数生成的随机数的最大值。 因此,`(double)rand() / RAND_MAX` 表示生成的随机数在 [0, 1] 之间的浮点数。 然后,将这个随机数乘上 `(a - b) - fabs(a - b)`,再加上 `fabs(a - b)`。 `fabs(a - b)` 是 C 语言标准库中的一个函数,用于计算一个数的绝对值。因此,`fabs(a - b)