基于Kmeans、Kmeans++和二分K均值算法的图像分割代码
时间: 2023-10-31 19:08:18 浏览: 87
以下是基于Kmeans、Kmeans++和二分K均值算法的图像分割代码的实现:
```python
import numpy as np
import cv2
class Kmeans:
def __init__(self, k=3, max_iter=10):
self.k = k
self.max_iter = max_iter
def fit(self, X):
self.centroids = X[np.random.choice(X.shape[0], self.k, replace=False)]
for i in range(self.max_iter):
distances = np.sqrt(((X - self.centroids[:, np.newaxis])**2).sum(axis=2))
self.labels = distances.argmin(axis=0)
for j in range(self.k):
self.centroids[j] = X[self.labels == j].mean(axis=0)
class KmeansPlusPlus(Kmeans):
def fit(self, X):
self.centroids = np.zeros((self.k, X.shape[1]))
self.centroids[0] = X[np.random.randint(X.shape[0])]
for i in range(1, self.k):
distances = np.sqrt(((X - self.centroids[:i, np.newaxis])**2).sum(axis=2))
probs = distances.min(axis=0) ** 2 / (distances.min(axis=0) ** 2).sum()
self.centroids[i] = X[np.random.choice(X.shape[0], p=probs)]
for i in range(self.max_iter):
distances = np.sqrt(((X - self.centroids[:, np.newaxis])**2).sum(axis=2))
self.labels = distances.argmin(axis=0)
for j in range(self.k):
self.centroids[j] = X[self.labels == j].mean(axis=0)
class BisectingKmeans:
def __init__(self, k=3, max_iter=10):
self.k = k
self.max_iter = max_iter
def fit(self, X):
self.clusters = [np.arange(X.shape[0])]
for i in range(self.k-1):
max_sse = -1
for j, cluster in enumerate(self.clusters):
kmeans = Kmeans(k=2, max_iter=self.max_iter).fit(X[cluster])
sse = ((X[cluster] - kmeans.centroids[kmeans.labels])**2).sum()
if sse > max_sse:
max_sse = sse
max_cluster = j
max_kmeans = kmeans
self.clusters.pop(max_cluster)
self.clusters.append(cluster[max_kmeans.labels == 0])
self.clusters.append(cluster[max_kmeans.labels == 1])
self.labels = np.zeros(X.shape[0])
for i, cluster in enumerate(self.clusters):
self.labels[cluster] = i
def image_segmentation(image_path, algorithm='kmeans', k=3, max_iter=10):
image = cv2.imread(image_path)
X = image.reshape(-1, 3)
if algorithm == 'kmeans':
kmeans = Kmeans(k=k, max_iter=max_iter).fit(X)
segmented_image = kmeans.centroids[kmeans.labels].reshape(image.shape)
elif algorithm == 'kmeans++':
kmeans_plus_plus = KmeansPlusPlus(k=k, max_iter=max_iter).fit(X)
segmented_image = kmeans_plus_plus.centroids[kmeans_plus_plus.labels].reshape(image.shape)
elif algorithm == 'bisecting_kmeans':
bisecting_kmeans = BisectingKmeans(k=k, max_iter=max_iter).fit(X)
segmented_image = bisecting_kmeans.centroids[bisecting_kmeans.labels].reshape(image.shape)
else:
raise ValueError('Invalid algorithm.')
return segmented_image
```
该代码实现了三种不同的K均值算法:基本K均值、K均值++和二分K均值。在图像分割中,我们将图像的像素视为数据点,将其重新组织为一个二维数组,其中每行代表一个像素,每列代表该像素的颜色通道值。我们可以使用上述算法对这些数据点进行聚类,然后使用聚类中心的颜色通道值来对图像进行分割。
以下是使用该代码进行图像分割的示例:
```python
import matplotlib.pyplot as plt
image_path = 'example.jpg'
# K均值算法
segmented_image = image_segmentation(image_path, algorithm='kmeans', k=3, max_iter=10)
plt.imshow(segmented_image)
plt.show()
# K均值++算法
segmented_image = image_segmentation(image_path, algorithm='kmeans++', k=3, max_iter=10)
plt.imshow(segmented_image)
plt.show()
# 二分K均值算法
segmented_image = image_segmentation(image_path, algorithm='bisecting_kmeans', k=3, max_iter=10)
plt.imshow(segmented_image)
plt.show()
```
阅读全文