解释这段代码for i,img_path in enumerate(glob.glob(path)):
时间: 2023-04-02 09:03:23 浏览: 282
这段代码使用了 Python 中的 glob 模块,它可以根据指定的路径模式匹配文件路径。在这里,path 是一个字符串,表示要匹配的文件路径模式。glob.glob(path) 返回一个列表,其中包含了所有匹配该模式的文件路径。for 循环遍历这个列表,每次迭代将当前文件路径赋值给 img_path,同时使用 enumerate 函数获取当前迭代的索引 i。因此,这段代码可以用来遍历指定路径下的所有文件,并对它们进行一些操作。
相关问题
这段代码使用的卷积神经网络吗import glob import numpy as np from PIL import Image from sklearn import svm from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt # 定义图像文件夹路径和类别 cat_path = "cats/" dog_path = "dogs/" cat_label = 0 dog_label = 1 # 定义图像预处理函数 def preprocess_image(file_path): img = Image.open(file_path).convert('L').resize((100, 100)) return np.array(img).flatten() # 读取猫和狗的图像并转换成 Numpy 数组 X = [] y = [] for file_path in glob.glob(cat_path + "*.jpg"): X.append(preprocess_image(file_path)) y.append(cat_label) for file_path in glob.glob(dog_path + "*.jpg"): X.append(preprocess_image(file_path)) y.append(dog_label) X = np.array(X) y = np.array(y) # 将数据集划分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) # 训练 SVM 分类器 clf = svm.SVC(kernel='linear') clf.fit(X_train, y_train) # 在测试集上进行预测 y_pred = clf.predict(X_test) # 计算测试集上的准确率 accuracy = np.mean(y_pred == y_test) print("Accuracy:", accuracy) # 显示测试集中的前 16 张图像和它们的预测结果 fig, axes = plt.subplots(nrows=4, ncols=4, figsize=(8, 8)) for i, ax in enumerate(axes.flat): # 显示图像 ax.imshow(X_test[i].reshape(100, 100), cmap='gray') # 设置图像标题为预测结果 if y_pred[i] == cat_label: ax.set_title("Cat") elif y_pred[i] == dog_label: ax.set_title("Dog") # 隐藏坐标轴 ax.axis('off') plt.show()
是的,这段代码中没有使用卷积神经网络,而是使用了支持向量机(SVM)分类器进行图像分类。预处理函数将图像转换为灰度图像并调整大小,然后将其展平为一维向量。接着使用 glob 模块获取图像文件路径,将图像数据和标签存储到 NumPy 数组中。然后使用 train_test_split 函数将数据集划分为训练集和测试集,使用 SVM 分类器进行训练和预测,计算准确率并显示预测结果。
修改代码:import os from PIL import Image import glob import numpy as np # 遍历文件夹 folder_path = 'E:/机器学习/helefull/labels' folders = os.listdir(folder_path) # print(folders) for filename in glob.glob(r'E:/机器学习/helefull/labels/*.png'): img=Image.open(filename).convert("RGB") # images=np.asarray(img) # print(images) # 只处理其中的20个文件夹 folder for folder in folders[:20]: folder_full_path = os.path.join(folder_path, folder) # print(folder_full_path) if os.path.isdir(folder_full_path): images = os.listdir(folder_full_path) print(images) blank_img = Image.new('RGB', (417, 354), (0, 0, 0)) for i,image_name in images: # 打开当前图片 img_path = os.path.join(folder_full_path, image_name) img = Image.open(img_path) # 遍历每一个像素点 for x in range(img.width): for y in range(img.height): # 如果当前像素点值为255,则将该像素点在空白图片上标记为i+1 if img.getpixel((x, y)) == 255: blank_img.putpixel((x, y), i+100) blank_img.save(f'new_{folder}.png')
import os
from PIL import Image
import glob
import numpy as np
# 遍历文件夹
folder_path = 'E:/机器学习/helefull/labels'
folders = os.listdir(folder_path)
for filename in glob.glob(r'E:/机器学习/helefull/labels/*.png'):
img = Image.open(filename).convert("RGB")
# images=np.asarray(img)
# print(images)
# 只处理其中的20个文件夹
for folder in folders[:20]:
folder_full_path = os.path.join(folder_path, folder)
# print(folder_full_path)
if os.path.isdir(folder_full_path):
images = os.listdir(folder_full_path)
print(images)
blank_img = Image.new('RGB', (417, 354), (0, 0, 0))
for i, image_name in enumerate(images):
# 打开当前图片
img_path = os.path.join(folder_full_path, image_name)
img = Image.open(img_path)
# 遍历每一个像素点
for x in range(img.width):
for y in range(img.height):
# 如果当前像素点值为255,则将该像素点在空白图片上标记为i+1
if img.getpixel((x, y)) == 255:
blank_img.putpixel((x, y), i+100)
blank_img.save(f'new_{folder}.png')
阅读全文