解释rx, ry, rw, rh = cv2.boundingRect(np.concatenate(contours))

时间: 2023-06-20 12:10:23 浏览: 126
在使用OpenCV进行图像处理时,cv2.boundingRect()函数可以用来计算轮廓的边界框(bounding box),即将轮廓包围起来的最小矩形。该函数接受一个轮廓数组作为输入参数,返回一个矩形的位置和大小,其格式为 (x,y,w,h),其中(x,y)是矩形左上角的坐标,w和h是矩形的宽度和高度。 在给定一组轮廓时,np.concatenate(contours)可以将它们合并成一个大的轮廓数组,然后cv2.boundingRect()函数计算出这些轮廓的最小包围矩形。rx、ry、rw和rh则是计算结果中矩形的x坐标、y坐标、宽度和高度。
相关问题

解释代码 def _rotate_img_bbox(self, img, bboxes, angle=5, scale=1.): w = img.shape[1] h = img.shape[0] rangle = np.deg2rad(angle) # now calculate new image width and height nw = (abs(np.sin(rangle) * h) + abs(np.cos(rangle) * w)) * scale nh = (abs(np.cos(rangle) * h) + abs(np.sin(rangle) * w)) * scale rot_mat = cv2.getRotationMatrix2D((nw * 0.5, nh * 0.5), angle, scale) rot_move = np.dot(rot_mat, np.array([(nw - w) * 0.5, (nh - h) * 0.5, 0])) rot_mat[0, 2] += rot_move[0] rot_mat[1, 2] += rot_move[1] rot_img = cv2.warpAffine(img, rot_mat, (int(math.ceil(nw)), int(math.ceil(nh))), flags=cv2.INTER_LANCZOS4) rot_bboxes = list() for bbox in bboxes: xmin = bbox[0] ymin = bbox[1] xmax = bbox[2] ymax = bbox[3] point1 = np.dot(rot_mat, np.array([(xmin + xmax) / 2, ymin, 1])) point2 = np.dot(rot_mat, np.array([xmax, (ymin + ymax) / 2, 1])) point3 = np.dot(rot_mat, np.array([(xmin + xmax) / 2, ymax, 1])) point4 = np.dot(rot_mat, np.array([xmin, (ymin + ymax) / 2, 1])) concat = np.vstack((point1, point2, point3, point4)) concat = concat.astype(np.int32) rx, ry, rw, rh = cv2.boundingRect(concat) rx_min = rx ry_min = ry rx_max = rx + rw ry_max = ry + rh rot_bboxes.append([rx_min, ry_min, rx_max, ry_max]) return rot_img, rot_bboxes

这段代码是一个类中的一个方法,用于将图像和边界框进行旋转。它接受一个图像(img)和一组边界框(bboxes),然后旋转图像和边界框,并返回旋转后的图像和边界框。 首先,代码获取图像的宽度(w)和高度(h)。然后,它将给定的角度转换为弧度(rangle)。接下来,根据旋转角度和比例因子(scale)计算新的图像宽度(nw)和高度(nh)。接着,通过调用cv2.getRotationMatrix2D函数计算旋转矩阵(rot_mat),该矩阵描述了如何旋转图像。然后,通过计算旋转矩阵和图像尺寸之间的偏移量(rot_move),将旋转矩阵进行调整,以便在旋转后的图像中正确地定位原始图像。接下来,使用cv2.warpAffine函数将图像应用旋转矩阵,得到旋转后的图像(rot_img)。 接下来,代码针对每个边界框进行处理。对于每个边界框,首先提取其四个顶点的坐标。然后,通过将旋转矩阵与每个顶点坐标进行矩阵乘法,将每个顶点坐标转换为旋转后的图像中的坐标。接着,将转换后的顶点坐标连接起来,并使用cv2.boundingRect函数计算边界框的最小外接矩形。最后,将旋转后的边界框添加到rot_bboxes列表中。 最后,方法返回旋转后的图像(rot_img)和旋转后的边界框列表(rot_bboxes)。

def get_postion(image): img = cv2.imread(image) blurred = cv2.GaussianBlur(image,(5,5),0,0) canny = cv2.Canny(blurred,0,100) contours,hierarchy=cv2.findContours(canny,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE) print(len(contours)) for contour in contours: x,y,w,h = cv2.boundingRect(contour) area = cv2.contourArea(contour) loop = cv2.arcLength(contour,True) if 152<loop<162 and 1444<area<1849: x,y,w,h = cv2.boundingRect(contour) cv2.rectangle(image,(x,y),(x+w,y+h),(0,0,255),2) cv2.imwrite("111.jpg",image) return x return 0帮我优化一下代码

Sure, here are some optimizations that can be made to the code: 1. Instead of reading the image using `cv2.imread()` inside the function, it would be better to pass in the image as an argument to the function. This way, the image can be read outside the function and the same image can be passed to multiple function calls, saving time and resources. 2. The Gaussian blur operation can be skipped as it is not required for detecting contours. This would save time and also reduce the noise in the image. 3. Instead of using a fixed threshold of 100 for the Canny edge detection, it would be better to use a variable threshold based on the median intensity of the image. This would ensure that the edges are detected appropriately for different images. 4. The loop over all the contours can be replaced with a loop over only the external contours, as the internal contours are not required for the given problem. 5. Instead of using a fixed range for the contour loop and area threshold, it would be better to use variable thresholds based on the size of the image. This would ensure that the contours are detected appropriately for different image sizes. Here is the optimized code: ``` import cv2 def get_position(image, min_loop, max_loop, min_area, max_area): blurred = cv2.GaussianBlur(image, (5,5), 0) median = int(cv2.medianBlur(image, 5).mean()) canny = cv2.Canny(blurred, median/2, median) contours, hierarchy = cv2.findContours(canny, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) print(len(contours)) for contour in contours: area = cv2.contourArea(contour) loop = cv2.arcLength(contour, True) if min_loop < loop < max_loop and min_area < area < max_area: x,y,w,h = cv2.boundingRect(contour) cv2.rectangle(image, (x,y), (x+w,y+h), (0,0,255), 2) cv2.imwrite("111.jpg", image) return x return 0 ``` You can adjust the values of `min_loop`, `max_loop`, `min_area`, and `max_area` based on the size and characteristics of your images.
阅读全文

相关推荐

import cv2 # 创建混合高斯模型 fgbg = cv2.createBackgroundSubtractorMOG2(history=500, varThreshold=50, detectShadows=False) # 打开视频文件 cap = cv2.VideoCapture('t1.mp4') # 获取视频帧率、宽度和高度 fps = int(cap.get(cv2.CAP_PROP_FPS)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # 创建前景视频对象 fg_out = cv2.VideoWriter('foreground_video.avi', cv2.VideoWriter_fourcc(*'XVID'), fps, (width, height)) # 循环遍历视频帧 while True: ret, frame = cap.read() if not ret: break # 高斯模型背景减除法 fgmask = fgbg.apply(frame) # 缩放比例 scale_percent = 50 # 计算缩放后的新尺寸 width = int(frame.shape[1] * scale_percent / 100) height = int(frame.shape[0] * scale_percent / 100) dim = (width, height) # 缩放图像 frame = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA) fgmask = cv2.resize(fgmask, dim, interpolation=cv2.INTER_AREA) # 形态学开运算去除噪点 kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) opening = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel) # 寻找轮廓并计算周长 contours, hierarchy = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for cnt in contours: perimeter = cv2.arcLength(cnt, True) if perimeter > 500: # 画出矩形框 x, y, w, h = cv2.boundingRect(cnt) cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) cv2.imshow('frame', frame) cv2.imshow('fgmask', fgmask) if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放对象 cap.release() fg_out.release() cv2.destroyAllWindows()改这个程序,消除视频抖动的影响,不要用光流补偿

最新推荐

recommend-type

autocorr-vi-5.3.6.1-24.el7.noarch.rpm.zip

文件太大放服务器下载,请务必到电脑端资源详情查看然后下载
recommend-type

ssm旅游资源网站.zip

ssm旅游资源网站.zip
recommend-type

bc-1.06.95-13.el7.x86_64.rpm.zip

文件放服务器下载,请务必到电脑端资源详情查看然后下载
recommend-type

Angular程序高效加载与展示海量Excel数据技巧

资源摘要信息: "本文将讨论如何在Angular项目中加载和显示Excel海量数据,具体包括使用xlsx.js库读取Excel文件以及采用批量展示方法来处理大量数据。为了更好地理解本文内容,建议参阅关联介绍文章,以获取更多背景信息和详细步骤。" 知识点: 1. Angular框架: Angular是一个由谷歌开发和维护的开源前端框架,它使用TypeScript语言编写,适用于构建动态Web应用。在处理复杂单页面应用(SPA)时,Angular通过其依赖注入、组件和服务的概念提供了一种模块化的方式来组织代码。 2. Excel文件处理: 在Web应用中处理Excel文件通常需要借助第三方库来实现,比如本文提到的xlsx.js库。xlsx.js是一个纯JavaScript编写的库,能够读取和写入Excel文件(包括.xlsx和.xls格式),非常适合在前端应用中处理Excel数据。 3. xlsx.core.min.js: 这是xlsx.js库的一个缩小版本,主要用于生产环境。它包含了读取Excel文件核心功能,适合在对性能和文件大小有要求的项目中使用。通过使用这个库,开发者可以在客户端对Excel文件进行解析并以数据格式暴露给Angular应用。 4. 海量数据展示: 当处理成千上万条数据记录时,传统的方式可能会导致性能问题,比如页面卡顿或加载缓慢。因此,需要采用特定的技术来优化数据展示,例如虚拟滚动(virtual scrolling),分页(pagination)或懒加载(lazy loading)等。 5. 批量展示方法: 为了高效显示海量数据,本文提到的批量展示方法可能涉及将数据分组或分批次加载到视图中。这样可以减少一次性渲染的数据量,从而提升应用的响应速度和用户体验。在Angular中,可以利用指令(directives)和管道(pipes)来实现数据的分批处理和显示。 6. 关联介绍文章: 提供的文章链接为读者提供了更深入的理解和实操步骤。这可能是关于如何配置xlsx.js在Angular项目中使用、如何读取Excel文件中的数据、如何优化和展示这些数据的详细指南。读者应根据该文章所提供的知识和示例代码,来实现上述功能。 7. 文件名称列表: "excel"这一词汇表明,压缩包可能包含一些与Excel文件处理相关的文件或示例代码。这可能包括与xlsx.js集成的Angular组件代码、服务代码或者用于展示数据的模板代码。在实际开发过程中,开发者需要将这些文件或代码片段正确地集成到自己的Angular项目中。 总结而言,本文将指导开发者如何在Angular项目中集成xlsx.js来处理Excel文件的读取,以及如何优化显示大量数据的技术。通过阅读关联介绍文章和实际操作示例代码,开发者可以掌握从后端加载数据、通过xlsx.js解析数据以及在前端高效展示数据的技术要点。这对于开发涉及复杂数据交互的Web应用尤为重要,特别是在需要处理大量数据时。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【SecureCRT高亮技巧】:20年经验技术大佬的个性化设置指南

![【SecureCRT高亮技巧】:20年经验技术大佬的个性化设置指南](https://www.vandyke.com/images/screenshots/securecrt/scrt_94_windows_session_configuration.png) 参考资源链接:[SecureCRT设置代码关键字高亮教程](https://wenku.csdn.net/doc/6412b5eabe7fbd1778d44db0?spm=1055.2635.3001.10343) # 1. SecureCRT简介与高亮功能概述 SecureCRT是一款广泛应用于IT行业的远程终端仿真程序,支持
recommend-type

如何设计一个基于FPGA的多功能数字钟,实现24小时计时、手动校时和定时闹钟功能?

设计一个基于FPGA的多功能数字钟涉及数字电路设计、时序控制和模块化编程。首先,你需要理解计时器、定时器和计数器的概念以及如何在FPGA平台上实现它们。《大连理工数字钟设计:模24计时器与闹钟功能》这份资料详细介绍了实验报告的撰写过程,包括设计思路和实现方法,对于理解如何构建数字钟的各个部分将有很大帮助。 参考资源链接:[大连理工数字钟设计:模24计时器与闹钟功能](https://wenku.csdn.net/doc/5y7s3r19rz?spm=1055.2569.3001.10343) 在硬件设计方面,你需要准备FPGA开发板、时钟信号源、数码管显示器、手动校时按钮以及定时闹钟按钮等
recommend-type

Argos客户端开发流程及Vue配置指南

资源摘要信息:"argos-client:客户端" 1. Vue项目基础操作 在"argos-client:客户端"项目中,首先需要进行项目设置,通过运行"yarn install"命令来安装项目所需的依赖。"yarn"是一个流行的JavaScript包管理工具,它能够管理项目的依赖关系,并将它们存储在"package.json"文件中。 2. 开发环境下的编译和热重装 在开发阶段,为了实时查看代码更改后的效果,可以使用"yarn serve"命令来编译项目并开启热重装功能。热重装(HMR, Hot Module Replacement)是指在应用运行时,替换、添加或删除模块,而无需完全重新加载页面。 3. 生产环境的编译和最小化 项目开发完成后,需要将项目代码编译并打包成可在生产环境中部署的版本。运行"yarn build"命令可以将源代码编译为最小化的静态文件,这些文件通常包含在"dist/"目录下,可以部署到服务器上。 4. 单元测试和端到端测试 为了确保项目的质量和可靠性,单元测试和端到端测试是必不可少的。"yarn test:unit"用于运行单元测试,这是测试单个组件或函数的测试方法。"yarn test:e2e"用于运行端到端测试,这是模拟用户操作流程,确保应用程序的各个部分能够协同工作。 5. 代码规范与自动化修复 "yarn lint"命令用于代码的检查和风格修复。它通过运行ESLint等代码风格检查工具,帮助开发者遵守预定义的编码规范,从而保持代码风格的一致性。此外,它也能自动修复一些可修复的问题。 6. 自定义配置与Vue框架 由于"argos-client:客户端"项目中提到的Vue标签,可以推断该项目使用了Vue.js框架。Vue是一个用于构建用户界面的渐进式JavaScript框架,它允许开发者通过组件化的方式构建复杂的单页应用程序。在项目的自定义配置中,可能需要根据项目需求进行路由配置、状态管理(如Vuex)、以及与后端API的集成等。 7. 压缩包子文件的使用场景 "argos-client-master"作为压缩包子文件的名称,表明该项目可能还涉及打包发布或模块化开发。在项目开发中,压缩包子文件通常用于快速分发和部署代码,或者是在模块化开发中作为依赖进行引用。使用压缩包子文件可以确保项目的依赖关系清晰,并且方便其他开发者快速安装和使用。 通过上述内容的阐述,我们可以了解到在进行"argos-client:客户端"项目的开发时,需要熟悉的一系列操作,包括项目设置、编译和热重装、生产环境编译、单元测试和端到端测试、代码风格检查和修复,以及与Vue框架相关的各种配置。同时,了解压缩包子文件在项目中的作用,能够帮助开发者高效地管理和部署代码。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【SecureCRT高亮规则深度解析】:让日志输出一目了然的秘诀

![【SecureCRT高亮规则深度解析】:让日志输出一目了然的秘诀](https://www.endace.com/assets/images/learn/packet-capture/Packet-Capture-diagram%203.png) 参考资源链接:[SecureCRT设置代码关键字高亮教程](https://wenku.csdn.net/doc/6412b5eabe7fbd1778d44db0?spm=1055.2635.3001.10343) # 1. SecureCRT高亮规则概述 ## 1.1 高亮规则的入门介绍 SecureCRT是一款流行的终端仿真程序,常被用来