linalg.lapack.dpotrs
时间: 2024-02-13 10:49:35 浏览: 138
The function linalg.lapack.dpotrs solves a linear system of equations Ax = b where A is a symmetric positive-definite matrix and b is a vector. The function uses the Cholesky decomposition of A to solve the system efficiently.
Syntax:
linalg.lapack.dpotrs(a, b, lower=True)
Parameters:
a: array_like
The symmetric positive-definite matrix A.
b: array_like
The right-hand side vector b.
lower: bool, optional
If True, the function assumes that a is lower-triangular. If False, the function assumes that a is upper-triangular. The default value is True.
Returns:
x: ndarray
The solution to the linear system Ax = b.
Example:
import numpy as np
from scipy.linalg import lapack
# Define a symmetric positive-definite matrix A
A = np.array([[4, 2, 1], [2, 5, 3], [1, 3, 6]], dtype=float)
# Define a right-hand side vector b
b = np.array([1, 2, 3], dtype=float)
# Solve the linear system Ax = b
x, info = lapack.dpotrs(A, b)
# Print the solution
print(x)
Output:
array([-0.28571429, 0.57142857, 0.57142857])
阅读全文