matlab在运行“grad = grad - lambda*div(grad);”提示数组的大小不兼容

时间: 2024-05-17 07:15:55 浏览: 62
这个错误可能是因为 `grad` 和 `div(grad)` 的维度不匹配,导致无法执行减法运算。请确保 `grad` 和 `div(grad)` 的维度相同。如果不是相同的维度,您需要使用 `reshape` 函数或其他类似的函数来调整两个数组的维度,以使它们能够匹配进行减法运算。您还可以检查 `grad` 和 `div(grad)` 是否都是矢量或矩阵,并且它们的形状是否与您的预期相同。
相关问题

错误使用 horzcat 要串联的数组的维度不一致。 出错 TV_denoising (第 9 行) y = y - lambda*[-grad(1), -diff(grad)]';

这个错误是因为`[-grad(1), -diff(grad)]`和`y`的维度不一致导致的。`[-grad(1), -diff(grad)]`是一个行向量,而`y`是一个列向量,两者不能直接拼接。你可以将`[-grad(1), -diff(grad)]`转置一下变成列向量,或者将`y`转置一下变成行向量,让它们的维度匹配。修改后的代码如下: ```matlab function [y] = TV_denoising(x, lambda, maxIter) y = x'; for i = 1:maxIter % 计算梯度 grad = diff(y); % 计算全变分 TV = sum(abs(grad)); % 更新信号 y = y - lambda*[-grad(1); -diff(grad)]; end y = y'; end ``` 在这个修改后的代码中,我们将`y`转置为行向量,然后对`[-grad(1), -diff(grad)]`进行转置,使之变成列向量。这样就可以使用`-lambda*[-grad(1); -diff(grad)]`来更新信号了。最后,我们再将`y`转置回来,使之变成列向量。 希望这个修改后的代码可以解决你遇到的问题。

请将matlab中“img1 = img1 + lambda * (img2 - img1) + lambda * (grad .* (result - img1)); ”这行代码改成18张图片的全变分融合

对于18张图片的全变分融合,需要进行以下步骤: 1. 读入18张图片,将它们存储在一个列表中。 2. 初始化结果图像result为18张输入图像的平均值。 3. 对于每个迭代步骤,执行以下操作: - 计算结果图像result的梯度grad。 - 对于每个输入图像,计算其与结果图像的差值,并乘以lambda。 - 对于每个差值图像,计算其与梯度grad的点积,并乘以lambda。 - 将所有差值图像和点积图像相加,并将结果加到结果图像result中。 4. 重复执行迭代步骤,直到结果图像收敛为止。 下面是将matlab中“img1 = img1 + lambda * (img2 - img1) + lambda * (grad .* (result - img1));”这行代码改成18张图片的全变分融合的示例代码: ```python import numpy as np import cv2 # 读入18张图片 img_list = [] for i in range(18): img = cv2.imread(f'input_{i}.jpg') img_list.append(img) # 初始化结果图像为18张输入图像的平均值 result = np.mean(img_list, axis=0) # 设置lambda和迭代次数 lamb = 0.1 iterations = 100 # 迭代融合 for i in range(iterations): # 计算结果图像的梯度 grad = cv2.Sobel(result, cv2.CV_64F, 1, 1, ksize=3) # 计算每个差值图像和点积图像,并将它们相加 for img in img_list: diff = lamb * (img - result) dot = lamb * np.dot(grad, result - img) result += diff + dot ``` 其中,`input_{i}.jpg`是输入图像的文件名,`lamb`是lambda值,`iterations`是迭代次数。在每个迭代步骤中,使用`cv2.Sobel`函数计算结果图像的梯度,然后计算每个差值图像和点积图像,并将它们相加。最后,重复执行迭代步骤,直到结果图像收敛为止。
阅读全文

相关推荐

function [beta, b, loss_history] = linear_regression(X, y, batch_size, lr, lr_decay, epochs, lambda) %输入参数: %X:训练数据的特征矩阵,大小为 m x n,其中 m 是样本数,n 是特征数。 %y:训练数据的目标值,大小为 m x 1。 %batch_size:mini-batch 的大小。 %lr:学习率。 %lr_decay:学习率衰减系数。 %epochs:迭代次数。 %lambda:正则项系数。 %输出参数: %beta:学习到的模型参数,大小为 n x 1。 %b:学习到的模型偏差,标量。 %loss_history:损失函数的历史记录,大小为 epochs x 1。 % 对输入数据进行标准化 [m, n] = size(X); mu = mean(X); sigma = std(X); X = (X - mu) ./ sigma; % 初始化模型参数 beta = randn(n, 1); b = randn(); % 设置损失函数的历史记录 loss_history = zeros(epochs, 1); % 进行 mini-batch SGD 迭代 for epoch = 1:epochs % 随机打乱样本顺序 idx = randperm(m); X = X(idx, :); y = y(idx); % 迭代 mini-batch for i = 1:batch_size:m % 计算当前 mini-batch 的梯度 X_batch = X(i:min(i+batch_size-1, m), :); y_batch = y(i:min(i+batch_size-1, m)); grad_theta = (X_batch' * (X_batch * beta + b - y_batch)) / batch_size + lambda * beta; grad_b = sum(X_batch * beta + b - y_batch) / batch_size; % 更新参数 lr = lr / (1 + lr_decay * epoch); % 学习率衰减 beta = beta - lr * grad_theta; b = b - lr * grad_b; end % 计算当前损失函数的值 loss = sum((X * beta + b - y) .^ 2) / (2 * m) + lambda * sum(beta .^ 2) / 2; loss_history(epoch) = loss; end % 绘制损失函数随迭代次数变化的曲线 plot(1:epochs, loss_history); xlabel('Epochs'); ylabel('Loss'); title('Loss vs. Epochs') end将此代码中标准化还原

#外点法(能运行出来) import math import sympy import numpy as np from matplotlib import pyplot as plt from mpl_toolkits.mplot3d import Axes3D plt.ion() fig = plt.figure() ax = Axes3D(fig) def draw(x,index,M): # F = f + MM * alpha # FF = sympy.lambdify((x1, x2), F, 'numpy') Z = FF(*(X, Y,M)) ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow',alpha=0.5) ax.scatter(x[0], x[1], FF(*(x[0],x[1],M)), c='r',s=80) ax.text(x[0], x[1], FF(*(x[0],x[1],M)), 'here:(%0.3f,%0.3f)' % (x[0], x[1])) ax.set_zlabel('F') # 坐标轴 ax.set_ylabel('X2') ax.set_xlabel('X1') plt.pause(0.1) # plt.show() # plt.savefig('./image/%03d' % index) plt.cla() C = 10 # 放大系数 M = 1 # 惩罚因子 epsilon = 1e-5 # 终止限 x1, x2 = sympy.symbols('x1:3') MM=sympy.symbols('MM') f = -x1 + x2 h = x1 + x2 - 1 # g=sympy.log(x2) if sympy.log(x2)<0 else 0 g = sympy.Piecewise((x2-1, x2 < 1), (0, x2 >= 1)) # u=lambda x: alpha = h ** 2 + g ** 2 F = f + MM * alpha # 梯度下降来最小化F def GD(x,M,n): # F = f + M * alpha # delta_x = 1e-11 # 数值求导 # t = 0.0001 # 步长 e = 0.001 # 极限 # my_print(e) np.array(x) for i in range(15): t = sympy.symbols('t') grad = np.asarray( [sympy.diff(F, x1).subs([(x1, x[0]), (x2, x[1]),(MM,M)]), sympy.diff(F, x2).subs([(x1, x[0]), (x2, x[1]),(MM,M)])]) # print('g',grad) # print((x-t*grad)) # print(F.subs([(x1,(x-t*grad)[0]),(x2,(x-t*grad)[1])])) t = sympy.solve(sympy.diff(F.subs([(x1, (x - t * grad)[0]), (x2, (x - t * grad)[1]),(MM,M)]), t), t) print('t',t) x = x - t * grad print('x', x) # print('mmm',M) draw(x,n*10+i,M) # my_print(np.linalg.norm(grad)) # print(type(grad)) if (abs(grad[0]) < e and abs(grad[1]) < e): # print(np.linalg.norm(grad)) print('g', grad) break return list(x) pass x = [-0.5, 0.2] X = np.arange(0, 4, 0.25) Y = np.arange(0, 4,

def calc_gradient_penalty(self, netD, real_data, fake_data): alpha = torch.rand(1, 1) alpha = alpha.expand(real_data.size()) alpha = alpha.cuda() interpolates = alpha * real_data + ((1 - alpha) * fake_data) interpolates = interpolates.cuda() interpolates = Variable(interpolates, requires_grad=True) disc_interpolates, s = netD.forward(interpolates) s = torch.autograd.Variable(torch.tensor(0.0), requires_grad=True).cuda() gradients1 = autograd.grad(outputs=disc_interpolates, inputs=interpolates, grad_outputs=torch.ones(disc_interpolates.size()).cuda(), create_graph=True, retain_graph=True, only_inputs=True, allow_unused=True)[0] gradients2 = autograd.grad(outputs=s, inputs=interpolates, grad_outputs=torch.ones(s.size()).cuda(), create_graph=True, retain_graph=True, only_inputs=True, allow_unused=True)[0] if gradients2 is None: return None gradient_penalty = (((gradients1.norm(2, dim=1) - 1) ** 2).mean() * self.LAMBDA) + \ (((gradients2.norm(2, dim=1) - 1) ** 2).mean() * self.LAMBDA) return gradient_penalty def get_loss(self, net,fakeB, realB): self.D_fake, x = net.forward(fakeB.detach()) self.D_fake = self.D_fake.mean() self.D_fake = (self.D_fake + x).mean() # Real self.D_real, x = net.forward(realB) self.D_real = (self.D_real+x).mean() # Combined loss self.loss_D = self.D_fake - self.D_real gradient_penalty = self.calc_gradient_penalty(net, realB.data, fakeB.data) return self.loss_D + gradient_penalty,return self.loss_D + gradient_penalty出现错误:TypeError: unsupported operand type(s) for +: 'Tensor' and 'NoneType'

def nnCostFunction(nn_params,input_layer_size, hidden_layer_size, num_labels,X, y,Lambda): # Reshape nn_params back into the parameters Theta1 and Theta2 Theta1 = nn_params[:((input_layer_size+1) * hidden_layer_size)].reshape(hidden_layer_size,input_layer_size+1) Theta2 = nn_params[((input_layer_size +1)* hidden_layer_size ):].reshape(num_labels,hidden_layer_size+1) m = X.shape[0] J=0 X = np.hstack((np.ones((m,1)),X)) y10 = np.zeros((m,num_labels)) a1 = sigmoid(X @ Theta1.T) a1 = np.hstack((np.ones((m,1)), a1)) # hidden layer a2 = sigmoid(a1 @ Theta2.T) # output layer for i in range(1,num_labels+1): y10[:,i-1][:,np.newaxis] = np.where(y==i,1,0) for j in range(num_labels): J = J + sum(-y10[:,j] * np.log(a2[:,j]) - (1-y10[:,j])*np.log(1-a2[:,j])) cost = 1/m* J reg_J = cost + Lambda/(2*m) * (np.sum(Theta1[:,1:]**2) + np.sum(Theta2[:,1:]**2)) # Implement the backpropagation algorithm to compute the gradients grad1 = np.zeros((Theta1.shape)) grad2 = np.zeros((Theta2.shape)) for i in range(m): xi= X[i,:] # 1 X 401 a1i = a1[i,:] # 1 X 26 a2i =a2[i,:] # 1 X 10 d2 = a2i - y10[i,:] d1 = Theta2.T @ d2.T * sigmoidGradient(np.hstack((1,xi @ Theta1.T))) grad1= grad1 + d1[1:][:,np.newaxis] @ xi[:,np.newaxis].T grad2 = grad2 + d2.T[:,np.newaxis] @ a1i[:,np.newaxis].T grad1 = 1/m * grad1 grad2 = 1/m*grad2 grad1_reg = grad1 + (Lambda/m) * np.hstack((np.zeros((Theta1.shape[0],1)),Theta1[:,1:])) grad2_reg = grad2 + (Lambda/m) * np.hstack((np.zeros((Theta2.shape[0],1)),Theta2[:,1:])) return cost, grad1, grad2,reg_J, grad1_reg,grad2_reg

最新推荐

recommend-type

2025年软考高级 - 信息系统项目管理师考试备考全攻略

2025年软考高级 - 信息系统项目管理师考试备考全攻略
recommend-type

MySQL 5.7从入门到精通 第23章 新闻发布系统数据库设计 共6页.pptx

【课程大纲】 第1章 初始MySQL 共19页.pptx 第2章 MySQL的安装与配置 共14页.pptx 第3章 数据库的基本操作 共11页.pptx 第4章 数据表的基本操作 共26页.pptx 第5章 数据类型和运算符 共17页.pptx 第6章 MySQL函数 共76页.pptx 第7章 查询数据 共48页.pptx 第8章 插入、更新与删除数据 共10页.pptx 第9章 索引 共11页.pptx 第10章 存储过程和函数 共19页.pptx 第11章 视图 共20页.pptx 第12章 触发器 共11页.pptx 第13章 用户管理 共25页.pptx 第14章 数据备份与还原 共21页.pptx 第15章 MySQL日志 共22页.pptx 第16章 性能优化 共18页.pptx 第17章 MySQL Workbench5.2 的使用 共15页.pptx 第18章 MySQL Replication 共27页.pptx 第19章 MySQL Cluster 共49页.pptx 第20章 MySQL管理利器——MySQL Utilities 共5页.pptx 第21章 读写分离的利器——MySQL Proxy 共5页.pptx 第22章 PHP操作MySQL数据库 共7页.pptx 第23章 新闻发布系统数据库设计 共6页.pptx 第24章 论坛管理系统数据库设计 共6页.pptx
recommend-type

Fisher Iris Setosa数据的主成分分析及可视化- Matlab实现

资源摘要信息: "该文档提供了一段关于在MATLAB环境下进行主成分分析(PCA)的代码,该代码针对的是著名的Fisher的Iris数据集(Iris Setosa部分),生成的输出包括帕累托图、载荷图和双图。Iris数据集是一个常用的教学和测试数据集,包含了150个样本的4个特征,这些样本分别属于3种不同的Iris花(Setosa、Versicolour和Virginica)。在这个特定的案例中,代码专注于Setosa这一种类的50个样本。" 知识点详细说明: 1. 主成分分析(PCA):PCA是一种统计方法,它通过正交变换将一组可能相关的变量转换为一组线性不相关的变量,这些新变量称为主成分。PCA在降维、数据压缩和数据解释方面非常有用。它能够将多维数据投影到少数几个主成分上,以揭示数据中的主要变异模式。 2. Iris数据集:Iris数据集由R.A.Fisher在1936年首次提出,包含150个样本,每个样本有4个特征:萼片长度、萼片宽度、花瓣长度和花瓣宽度。每个样本都标记有其对应的种类。Iris数据集被广泛用于模式识别和机器学习的分类问题。 3. MATLAB:MATLAB是一个高性能的数值计算和可视化软件,广泛用于工程、科学和数学领域。它提供了大量的内置函数,用于矩阵运算、函数和数据分析、算法开发、图形绘制和用户界面构建等。 4. 帕累托图:在PCA的上下文中,帕累托图可能是指对主成分的贡献度进行可视化,从而展示各个特征在各主成分上的权重大小,帮助解释主成分。 5. 载荷图:载荷图在PCA中显示了原始变量与主成分之间的关系,即每个主成分中各个原始变量的系数(载荷)。通过载荷图,我们可以了解每个主成分代表了哪些原始特征的信息。 6. 双图(Biplot):双图是一种用于展示PCA结果的图形,它同时显示了样本点和变量点。样本点在主成分空间中的位置表示样本的主成分得分,而变量点则表示原始变量在主成分空间中的载荷。 7. MATLAB中的标签使用:在MATLAB中,标签(Label)通常用于标记图形中的元素,比如坐标轴、图例、文本等。通过使用标签,可以使图形更加清晰和易于理解。 8. ObsLabels的使用:在MATLAB中,ObsLabels用于定义观察对象的标签。在绘制图形时,可以通过ObsLabels为每个样本点添加文本标签,以便于识别。 9. 导入Excel数据:MATLAB提供了工具和函数,用于将Excel文件中的数据导入到MATLAB环境。这对于分析存储在Excel表格中的数据非常有用。 10. 压缩包子文件:这里的"压缩包子文件"可能是一个误译或者打字错误,实际上应该是指一个包含代码的压缩文件包(Zip file)。文件名为PCA_IrisSetosa_sep28_1110pm.zip,表明这是一个包含了PCA分析Iris Setosa数据集的MATLAB代码压缩包,创建时间为2021年9月28日晚上11点10分。 代码可能包含的步骤和操作包括: - 加载数据:从Excel表格中读取数据。 - 数据预处理:为数据点编号,准备标签。 - PCA计算:执行PCA算法,得到特征向量和特征值。 - 结果可视化:使用MATLAB的绘图函数绘制帕累托图、载荷图和双图。 - 标签应用:在图形中用标签标记样本点。 - 代码改进:寻求方法将样本编号与双图中的符号同时显示。 这段代码为数据科学家和学生提供了一个很好的PCA应用实例,有助于深入理解PCA的实际应用以及如何在MATLAB中进行数据分析和可视化。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【R语言深度学习】:keras和tensorflow带你进入AI世界

![【R语言深度学习】:keras和tensorflow带你进入AI世界](https://opengraph.githubassets.com/efb880e2026ddff3141a65a02e45b2d2498440e1920a6f7f26bd41f37f0108db/claCase/Classification-with-Keras-in-R) # 1. 深度学习与AI简介 深度学习作为人工智能(AI)的一个重要分支,近年来在图像识别、语音处理、自然语言处理等领域取得了重大突破。本章将对深度学习的概念进行概述,并解释它与传统机器学习的区别,最后展望AI技术的发展趋势及挑战。 ##
recommend-type

如何使用C语言中的分支结构(如if-else语句)来比较两个整数x和y,并根据比较结果按从小到大的顺序输出他们的值

在C语言中,你可以使用if-else语句结合条件运算符(?:)来比较两个整数x和y并按照指定的顺序输出。以下是一个简单的示例: ```c #include <stdio.h> int main() { int x, y; // 假设已经给x和y赋了值 if (x <= y) { // 如果x小于等于y printf("The smaller number is: %d\n", x); } else { // 否则 printf("The smaller number is: %d\n", y); // 输出较大的数 }
recommend-type

深入理解JavaScript类与面向对象编程

资源摘要信息:"JavaScript-Classes-OOP" JavaScript中的类是自ES6(ECMAScript 2015)引入的特性,它提供了一种创建构造函数和对象的新语法。类可以看作是创建和管理对象的蓝图或模板。JavaScript的类实际上是基于原型继承的语法糖,这使得基于原型的继承看起来更像传统的面向对象编程(OOP)语言,如Java或C++。 面向对象编程(OOP)是一种编程范式,它使用“对象”来设计应用和计算机程序。在OOP中,对象可以包含数据和代码,这些代码称为方法。对象中的数据通常被称为属性。OOP的关键概念包括类、对象、继承、多态和封装。 JavaScript类的创建和使用涉及以下几个关键点: 1. 类声明和类表达式:类可以通过类声明和类表达式两种形式来创建。类声明使用`class`关键字,后跟类名。类表达式可以是命名的也可以是匿名的。 ```javascript // 类声明 class Rectangle { constructor(height, width) { this.height = height; this.width = width; } } // 命名类表达式 const Square = class Square { constructor(sideLength) { this.sideLength = sideLength; } }; ``` 2. 构造函数:在JavaScript类中,`constructor`方法是一个特殊的方法,用于创建和初始化类创建的对象。一个类只能有一个构造函数。 3. 继承:继承允许一个类继承另一个类的属性和方法。在JavaScript中,可以使用`extends`关键字来创建一个类,该类继承自另一个类。被继承的类称为超类(superclass),继承的类称为子类(subclass)。 ```javascript class Animal { constructor(name) { this.name = name; } speak() { console.log(`${this.name} makes a noise.`); } } class Dog extends Animal { speak() { console.log(`${this.name} barks.`); } } ``` 4. 类的方法:在类内部可以定义方法,这些方法可以直接写在类的主体中。类的方法可以使用`this`关键字访问对象的属性。 5. 静态方法和属性:在类内部可以定义静态方法和静态属性。这些方法和属性只能通过类本身来访问,而不能通过实例化对象来访问。 ```javascript class Point { constructor(x, y) { this.x = x; this.y = y; } static distance(a, b) { const dx = a.x - b.x; const dy = a.y - b.y; return Math.sqrt(dx * dx + dy * dy); } } const p1 = new Point(5, 5); const p2 = new Point(10, 10); console.log(Point.distance(p1, p2)); // 输出:7.071... ``` 6. 使用new关键字创建实例:通过使用`new`关键字,可以基于类的定义创建一个新对象。 ```javascript const rectangle = new Rectangle(20, 10); ``` 7. 类的访问器属性:可以为类定义获取(getter)和设置(setter)访问器属性,允许你在获取和设置属性值时执行代码。 ```javascript class Temperature { constructor(celsius) { this.celsius = celsius; } get fahrenheit() { return this.celsius * 1.8 + 32; } set fahrenheit(value) { this.celsius = (value - 32) / 1.8; } } ``` JavaScript类和OOP的概念不仅限于上述这些,还包括如私有方法和属性、类字段(字段简写和计算属性名)等其他特性。这些特性有助于实现封装、信息隐藏等面向对象的特性,使得JavaScript的面向对象编程更加灵活和强大。随着JavaScript的发展,类和OOP的支持在不断地改进和增强,为开发者提供了更多编写高效、可维护和可扩展代码的工具。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

R语言大数据处理:高效管理大规模数据的data.table技巧

![R语言大数据处理:高效管理大规模数据的data.table技巧](https://astrobiomike.github.io/images/R_tab_index_1.png) # 1. R语言与大数据的交汇点 在数据科学领域,R语言是分析和可视化的强大工具,而大数据则代表着数据处理与存储的新纪元。R语言在大数据场景中的应用变得越来越广泛,尤其是在统计分析、数据建模和机器学习等任务中。随着数据集的大小日益增长,对数据处理的效率和可扩展性要求也越来越高。传统上,R语言在处理大规模数据集时可能面临内存限制和其他性能问题。然而,随着data.table包的出现,R语言用户现在能够以一种前所未
recommend-type

如何使用java poi来读取Word文档中的序号数据?

使用Java的Apache POI库来读取Word文档(.docx文件)中的序号数据需要进行几个步骤: 1. **添加依赖**:首先,你需要将Apache POI库添加到你的项目中。如果你使用Maven,可以在pom.xml文件中加入以下依赖: ```xml <dependency> <groupId>org.apache.poi</groupId> <artifactId>poi-ooxml</artifactId> <version>5.0.0</version> <!-- 更新到最新的稳定版本 --> </dependency> ``` 2. **创建`XWP