grad_x = max(Mag_grad_x-lambda/alpha,0).*(grad_x./Mag_grad_x); grad_y = max(Mag_grad_y-lambda/alpha,0).*(grad_y./Mag_grad_y);
时间: 2024-05-27 17:07:56 浏览: 133
这段代码是在进行图像处理中的梯度剪裁操作。假设原图像的梯度为(grad_x, grad_y),梯度的大小为Mag_grad_x和Mag_grad_y,lambda和alpha是常数。这段代码的作用是将梯度的大小限制在Mag_grad_x-lambda/alpha和Mag_grad_y-lambda/alpha之间,如果梯度大小小于这个范围,则将梯度置为0;否则,将梯度的大小缩放为原来的比例。
具体来说,max(Mag_grad_x-lambda/alpha,0) 和 max(Mag_grad_y-lambda/alpha,0) 是对梯度大小进行限制,如果梯度大小小于Mag_grad_x-lambda/alpha或Mag_grad_y-lambda/alpha,则将梯度置为0,否则保持原来的值不变。grad_x./Mag_grad_x 和 grad_y./Mag_grad_y 是将梯度归一化为单位向量,这样缩放后的梯度大小就与原来的比例相同了。最终得到的grad_x和grad_y就是经过梯度剪裁后的结果。
相关问题
function [Result, cost, SNR]= denoising(input, lambda, max_Iter, label, Ori_Img) cost = []; SNR = []; Img_ori = im2double(input); [height,width,ch] = size(input);1 denom_tmp = (abs(psf2otf([1, -1],[height,width])).^2 + abs(psf2otf([1; -1],[height,width])).^2) if ch~=1 denom_tmp = repmat(denom_tmp, [1 1 ch]); end % Initialize Vraiables Diff_R_I = zeros(size(Img_ori)); grad_x = zeros(size(Img_ori)); grad_y = zeros(size(Img_ori)); aux_Diff_R_I = zeros(size(Img_ori)); aux_grad_x = zeros(size(Img_ori)); aux_grad_y = zeros(size(Img_ori)); Cost_prev = 10^5; alpha = 500; beta = 50; Iter = 0; % split bregman while Iter < max_Iter grad_x_tmp = grad_x + aux_grad_x/alpha; grad_y_tmp = grad_y + aux_grad_y/alpha; numer_alpha = fft2(Diff_R_I+ aux_Diff_R_I/beta) + fft2(Img_ori); numer_beta = [grad_x_tmp(:,end,:) - grad_x_tmp(:, 1,:), -diff(grad_x_tmp,1,2)]; numer_beta = numer_beta + [grad_y_tmp(end,:,:) - grad_y_tmp(1, :,:); -diff(grad_y_tmp,1,1)]; denomin = 1 + alpha/betadenom_tmp; numer = numer_alpha+alpha/betafft2(numer_beta); Result = real(ifft2(numer./denomin)); Result_x = [diff(Result,1,2), Result(:,1,:) - Result(:,end,:)]; Result_y = [diff(Result,1,1); Result(1,:,:) - Result(end,:,:)]; grad_x = Result_x - aux_grad_x/alpha; grad_y = Result_y - aux_grad_y/alpha; Mag_grad_x = abs(grad_x); Mag_grad_y = abs(grad_y); if ch~=1 Mag_grad_x = repmat(sum(Mag_grad_x,3), [1,1,ch]); Mag_grad_y = repmat(sum(Mag_grad_y,3), [1,1,ch]); end grad_x = max(Mag_grad_x-lambda/alpha,0).(grad_x./Mag_grad_x); grad_y = max(Mag_grad_y-lambda/alpha,0).(grad_y./Mag_grad_y); grad_x(Mag_grad_x == 0) = 0; grad_y(Mag_grad_y == 0) = 0; Diff_R_I = Result-Img_ori-aux_Diff_R_I/beta; Mag_Diff_R_I = abs(Diff_R_I); if ch~=1 Mag_Diff_R_I = repmat(sum(Mag_Diff_R_I,3), [1,1,ch]); end if label == 1 Diff_R_I=max(Mag_Diff_R_I-1/beta,0).(Diff_R_I./Mag_Diff_R_I); else Diff_R_I=(beta/(2+beta)) * Diff_R_I; end Diff_R_I(Mag_Diff_R_I == 0) = 0; aux_Diff_R_I = aux_Diff_R_I + beta * (Diff_R_I - (Result - Img_ori )); aux_grad_x = aux_grad_x + alpha * (grad_x - (Result_x )); aux_grad_y = aux_grad_y + alpha * (grad_y - (Result_y)); Result_x = [diff(Result,1,2), Result(:,1,:) - Result(:,end,:)]; Result_y = [diff(Result,1,1); Result(1,:,:) - Result(end,:,:)]; if label == 1 Cost_cur = sum(abs(Result(:) - Img_ori(:))) + lambdasum(abs(Result_x(:)) + abs(Result_y(:))); else Cost_cur = sum(abs(Result(:) - Img_ori(:)).^2) + lambda*sum(abs(Result_x(:)) + abs(Result_y(:))); end Diff = abs(Cost_cur - Cost_prev); Cost_prev = Cost_cur; cost = [cost Cost_cur]; SNR_tmp = sqrt( sum( (Result(:)-double(Ori_Img(:))).^2 )) / sqrt(numel(Result)); SNR = [SNR SNR_tmp]; Iter = Iter + 1; end end
这段代码实现了一种图像去噪算法,使用了Split Bregman方法。具体来说,该算法通过最小化一个带有$L_1$正则项的能量函数来去除噪声。其中,$L_1$正则项用于促使平滑图像的梯度尽可能小,从而去除噪声。
该算法的主要思想是将图像分解为梯度和残差两个部分,并分别对其进行处理。具体来说,算法首先通过FFT计算分母,并计算分子的两部分(其中一部分使用了差分算子),然后通过IFFT计算出分子除以分母的结果。接着,算法对计算得到的梯度进行$L_1$正则化,并更新残差。最后,算法计算当前的损失函数值和信噪比,并继续迭代直到达到最大迭代次数。
需要注意的是,该算法还可以根据label参数的不同取值,分别使用$L_2$正则项或$L_1$正则项来计算损失函数。同时,该算法还使用了一个特殊的变量$\beta$来平衡残差和梯度的影响,以实现更好的去噪效果。
帮我分析一下python程序代码from PIL import Image import numpy as np a = (np.array(Image.open("C:/picture/1.jpg").convert('L')).astype('float')) depth = 3. grad = np.gradient(a) grad_x, grad_y = grad grad_x = grad_x*depth/100. grad_y = grad_y*depth/100. A = np.sqrt(grad_x**2 + grad_y**2 + 1.) uni_x = grad_x/A uni_y = grad_y/A uni_z = 1./A vec_el = np.pi/2.2 vec_az = np.pi/4. dx = np.cos(vec_el)*np.cos(vec_az) dy = np.cos(vec_el)*np.sin(vec_az) dz = np.sin(vec_el) b = 255*(dx*uni_x + dy*uni_y + dz*uni_z) b = b.clip(0, 255) im = Image.fromarray(b.astype('uint8')) im.save("C:/picture/5.jpg")
这段代码实现了将一张彩色图片转换为灰度图,并对其进行了一些处理,最终生成了一张新的图片。
具体实现步骤如下:
1. 引入了PIL库和numpy库。
2. 通过PIL库中的Image.open()函数打开一张图片,并将其转换为灰度图像(convert('L'))。
3. 使用numpy库中的gradient()函数计算图像的梯度值并保存在grad中。
4. 将grad分别赋值给grad_x和grad_y。
5. 将grad_x和grad_y乘以一个系数depth/100,即将其值缩小到原来的depth/100倍。
6. 计算出梯度的三个方向(x、y、z)的单位向量,其中x和y是根据梯度值计算出的,z为1。
7. 计算出视角的方向向量(dx、dy、dz),其中vec_el和vec_az为视角的仰角和方位角,这里分别设置为π/2.2和π/4。
8. 将视角的方向向量与梯度方向向量相乘并累加得到一个新的灰度值b。
9. 将b的值限制在0~255之间(clip(0, 255))。
10. 通过Image.fromarray()函数将b转换为一张图片,并保存到文件系统中。
阅读全文