[max_resp_row, max_row] = max(response, [], 1); [init_max_response, max_col] = max(max_resp_row, [], 2); max_row_perm = permute(max_row, [2 3 1]); col = max_col(:)'; row = max_row_perm(sub2ind(size(max_row_perm), col, 1:size(response,3))); trans_row = mod(row - 1 + floor((use_sz(1)-1)/2), use_sz(1)) - floor((use_sz(1)-1)/2); trans_col = mod(col - 1 + floor((use_sz(2)-1)/2), use_sz(2)) - floor((use_sz(2)-1)/2); init_pos_y = permute(2pi * trans_row / use_sz(1), [1 3 2]); init_pos_x = permute(2pi * trans_col / use_sz(2), [1 3 2]); max_pos_y = init_pos_y; max_pos_x = init_pos_x; % pre-compute complex exponential exp_iky = exp(bsxfun(@times, 1i * ky, max_pos_y)); exp_ikx = exp(bsxfun(@times, 1i * kx, max_pos_x)); % gradient_step_size = gradient_step_size / prod(use_sz); ky2 = ky.ky; kx2 = kx.kx; iter = 1; while iter <= iterations % Compute gradient ky_exp_ky = bsxfun(@times, ky, exp_iky); kx_exp_kx = bsxfun(@times, kx, exp_ikx); y_resp = mtimesx(exp_iky, responsef, 'speed'); resp_x = mtimesx(responsef, exp_ikx, 'speed'); grad_y = -imag(mtimesx(ky_exp_ky, resp_x, 'speed')); grad_x = -imag(mtimesx(y_resp, kx_exp_kx, 'speed')); ival = 1i * mtimesx(exp_iky, resp_x, 'speed'); H_yy = real(-mtimesx(bsxfun(@times, ky2, exp_iky), resp_x, 'speed') + ival); H_xx = real(-mtimesx(y_resp, bsxfun(@times, kx2, exp_ikx), 'speed') + ival); H_xy = real(-mtimesx(ky_exp_ky, mtimesx(responsef, kx_exp_kx, 'speed'), 'speed')); det_H = H_yy . H_xx - H_xy . H_xy; % Compute new position using newtons method max_pos_y = max_pos_y - (H_xx .* grad_y - H_xy .* grad_x) ./ det_H; max_pos_x = max_pos_x - (H_yy .* grad_x - H_xy .* grad_y) ./ det_H; % Evaluate maximum exp_iky = exp(bsxfun(@times, 1i * ky, max_pos_y)); exp_ikx = exp(bsxfun(@times, 1i * kx, max_pos_x)); iter = iter + 1; end max_response = 1 / prod(use_sz) * real(mtimesx(mtimesx(exp_iky, responsef, 'speed'), exp_ikx, 'speed')); % check for scales that have not increased in score ind = max_response < init_max_response; max_response(ind) = init_max_response(ind); max_pos_y(ind) = init_pos_y(ind); max_pos_x(ind) = init_pos_x(ind); [max_scale_response, sind] = max(max_response(:)); disp_row = (mod(max_pos_y(1,1,sind) + pi, 2pi) - pi) / (2pi) * use_sz(1); disp_col = (mod(max_pos_x(1,1,sind) + pi, 2pi) - pi) / (2pi) * use_sz(2); end代码详解

时间: 2023-12-06 19:03:14 浏览: 33
这段代码是一个视觉目标跟踪算法中的一部分,用于在图像中追踪目标的位置。具体来说,该代码实现了一种基于傅里叶变换的跟踪方法,该方法通过计算目标与模板之间的相似度得出目标的位置。该方法的关键是将目标与模板都转换到频域,然后通过计算它们的逐点乘积得出它们的相似度,从而确定目标的位置。 具体来说,该代码首先计算出目标与模板的傅里叶变换。然后,它计算出目标与模板的逐点乘积,并将其转换回时域。接下来,它通过牛顿迭代法来寻找目标的最优位置,同时计算出目标在不同尺度下的最大响应值。最后,它选择响应值最大的尺度,并输出目标的位置。 需要注意的是,该代码中的一些变量是根据具体的实现而命名的,因此可能需要参考更完整的代码来理解其含义。
相关问题

[max_resp_row, max_row] = max(response, [], 1); [init_max_response, max_col] = max(max_resp_row, [], 2); max_row_perm = permute(max_row, [2 3 1]); col = max_col(:)'; row = max_row_perm(sub2ind(size(max_row_perm), col, 1:size(response,3)));详解

这段代码是 Matlab 语言的代码,主要是用于获取矩阵 response 中每一列的最大值及其所在的行号和列号。 具体来说,第一行代码 `[max_resp_row, max_row] = max(response, [], 1)` 中使用了 Matlab 内置函数 `max`,该函数用于获取矩阵 response 中每一列的最大值和对应的行号,其中 `max_resp_row` 是一个行向量,存储每一列的最大值,`max_row` 是一个行向量,存储每一列最大值所在的行号。 第二行代码 `[init_max_response, max_col] = max(max_resp_row, [], 2)` 中同样使用了 `max` 函数,但是此时作用在 `max_resp_row` 上,获取整个矩阵中的最大值和对应的列号,其中 `init_max_response` 是一个标量,存储矩阵 response 中所有元素的最大值,`max_col` 是一个标量,存储最大值所在的列号。 第三行代码 `max_row_perm = permute(max_row, [2 3 1])` 中使用了 `permute` 函数,将 `max_row` 中的维度重新排列,具体来说是将 `max_row` 中的行向量转换为列向量,以便后续进行处理。 第四行代码 `col = max_col(:)'` 将 `max_col` 中的标量转换为行向量。 第五行代码 `row = max_row_perm(sub2ind(size(max_row_perm), col, 1:size(response,3)))` 中使用了 `sub2ind` 函数,将行列坐标转换为线性索引,然后利用 `max_row_perm` 中的列向量 `max_row_perm(:,1,:)` 作为行索引,以及 `col` 向量作为列索引,获取矩阵 response 中每一列最大值所在的行号。最终,`row` 变量是一个行向量,存储每一列最大值所在的行号。

WNM_BSS_TRANS_MGMT_RESP

WNM_BSS_TRANS_MGMT_RESP是无线网络管理(WNM)协议中的一种响应消息。WNM协议是用于在无线局域网(WLAN)中进行网络管理和配置的一种协议。 WNM_BSS_TRANS_MGMT_RESP消息是由接收方向发送方返回的响应消息,用于确认或拒绝发送方发起的BSS(基本服务集)过渡管理请求。BSS过渡管理是指在WLAN中切换到另一个BSS的过程,例如从一个接入点切换到另一个接入点。 WNM_BSS_TRANS_MGMT_RESP消息通常包含以下信息: 1. 状态码:用于指示请求的处理结果,例如成功、失败或其他特定状态。 2. 原因代码:如果请求失败,原因代码可以提供更详细的失败原因。 3. 其他可选字段根据具体实现和需求,可能还包含其他相关信息。 相关问题--: 1. 什么是WNM协议? 2. 什么是BSS过渡管理? 3. WNM_BSS_TRANS_MGMT_RESP消息中的状态码有哪些可能的取值? 4. WNM_BSS_TRANS_MGMT_RESP消息中的原因代码有什么作用?

相关推荐

最新推荐

recommend-type

基于Python的蓝桥杯竞赛平台的设计与实现

【作品名称】:基于Python的蓝桥杯竞赛平台的设计与实现 【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。 【项目介绍】:基于Python的蓝桥杯竞赛平台的设计与实现
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。