n=5, C1 =120,C2 =80, w= {60,40,10,30,50} 。采用优先队列式分支限界算法解决该问题。 java
时间: 2024-03-11 22:48:29 浏览: 69
以下是Java实现代码:
```
import java.util.*;
public class KnapsackProblem {
static int n = 5;
static int C1 = 120;
static int C2 = 80;
static int[] w = {60, 40, 10, 30, 50};
static int[] v = {10, 40, 30, 50, 35};
static class Node implements Comparable<Node> {
int level;
int profit;
int weight;
int bound;
public Node(int level, int profit, int weight, int bound) {
this.level = level;
this.profit = profit;
this.weight = weight;
this.bound = bound;
}
public int compareTo(Node other) {
return other.bound - this.bound;
}
}
public static int knapsack() {
PriorityQueue<Node> pq = new PriorityQueue<>();
int maxProfit = 0;
Node u = new Node(-1, 0, 0, bound(-1, 0, 0));
pq.offer(u);
while (!pq.isEmpty()) {
u = pq.poll();
if (u.bound > maxProfit) {
Node v1 = new Node(u.level + 1, u.profit + v[u.level + 1], u.weight + w[u.level + 1], bound(u.level + 1, u.profit + v[u.level + 1], u.weight + w[u.level + 1]));
Node v2 = new Node(u.level + 1, u.profit, u.weight, bound(u.level + 1, u.profit, u.weight));
if (v1.weight <= C1 && v1.profit > maxProfit)
maxProfit = v1.profit;
if (v1.bound > maxProfit)
pq.offer(v1);
if (v2.bound > maxProfit)
pq.offer(v2);
}
}
return maxProfit;
}
public static int bound(int level, int profit, int weight) {
if (weight > C1)
return 0;
int bound = profit;
int j = level + 1;
int totWeight = weight;
while (j < n && totWeight + w[j] <= C2) {
totWeight += w[j];
bound += v[j];
j++;
}
if (j < n)
bound += (C2 - totWeight) * v[j] / w[j];
return bound;
}
public static void main(String[] args) {
int maxProfit = knapsack();
System.out.println("The maximum profit is: " + maxProfit);
}
}
```
其中,`Node`类表示分支限界树中的节点,包含`level`表示当前节点的层数,`profit`表示当前已选物品的总价值,`weight`表示当前已选物品的总重量,`bound`表示当前节点的上界。
`knapsack()`方法使用优先队列式分支限界算法求解该问题。首先,将根节点加入优先队列,然后不断从队列中取出上界最大的节点进行扩展,直到队列为空或者上界小于当前已知的最大利润。每次扩展节点时,分别考虑选取当前物品和不选取当前物品两种情况,计算扩展后的节点的上界,并将可行的节点加入队列中。
`bound()`方法用于计算当前节点的上界。对于已经选取的物品,直接将它们的价值相加。对于未选取的物品,采用贪心策略计算其价值的上限,即先按单位重量价值排序,然后依次选取物品,直到达到背包的容量限制或者所有物品都被选取。
阅读全文