logistic逻辑回归python实例
时间: 2023-06-05 10:48:05 浏览: 131
好的,这里是一个 logistic 回归的 Python 实例:
```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression
# 创建一个二分类数据集
np.random.seed(0)
X = np.random.randn(200, 2)
y = np.logical_xor(X[:, 0] > 0, X[:, 1] > 0)
# 使用 logistic 回归进行分类
clf = LogisticRegression()
clf.fit(X, y)
# 生成测试数据
xx, yy = np.meshgrid(np.linspace(-3, 3, 500),
np.linspace(-3, 3, 500))
Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]
Z = Z.reshape(xx.shape)
# 可视化分类结果
plt.contourf(xx, yy, Z, cmap=plt.cm.RdBu, alpha=.8)
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.RdBu_r)
plt.show()
```
在这个实例中,我们使用 NumPy 创建了一个二维随机数据集,然后使用 `LogisticRegression` 类进行分类。我们还使用 Matplotlib 可视化了分类结果。
值得注意的是,这个实例只是演示了如何使用 logistic 回归进行二分类,实际上 logistic 回归也可以用于多分类问题。另外,这个实例也只是使用了 scikit-learn 库中的 LogisticRegression 类,还有其他库和方法也可以实现 logistic 回归。
阅读全文