实现mnist手写数字数据集knn分类并计算正确率
时间: 2023-09-06 11:07:13 浏览: 132
好的,我可以帮你实现这个任务。首先,我们需要加载MNIST数据集,这里我使用Python的`scikit-learn`库来加载数据集:
```python
from sklearn.datasets import fetch_openml
mnist = fetch_openml('mnist_784')
X, y = mnist["data"], mnist["target"]
```
接下来,我们需要将数据集分为训练集和测试集,这里我将前60000个样本作为训练集,剩余的10000个样本作为测试集:
```python
X_train, y_train = X[:60000], y[:60000]
X_test, y_test = X[60000:], y[60000:]
```
然后,我们可以使用`KNeighborsClassifier`类来实现KNN算法,并使用训练集来训练模型:
```python
from sklearn.neighbors import KNeighborsClassifier
knn_clf = KNeighborsClassifier()
knn_clf.fit(X_train, y_train)
```
最后,我们可以使用测试集来测试模型的性能,并计算分类的正确率:
```python
y_pred = knn_clf.predict(X_test)
accuracy = sum(y_pred == y_test) / len(y_test)
print("Accuracy:", accuracy)
```
完整代码如下:
```python
from sklearn.datasets import fetch_openml
from sklearn.neighbors import KNeighborsClassifier
mnist = fetch_openml('mnist_784')
X, y = mnist["data"], mnist["target"]
X_train, y_train = X[:60000], y[:60000]
X_test, y_test = X[60000:], y[60000:]
knn_clf = KNeighborsClassifier()
knn_clf.fit(X_train, y_train)
y_pred = knn_clf.predict(X_test)
accuracy = sum(y_pred == y_test) / len(y_test)
print("Accuracy:", accuracy)
```
运行代码后,你应该可以得到一个大约为0.97的正确率。
阅读全文