k折交叉验证matlab代码
时间: 2023-11-20 20:14:11 浏览: 123
下面是一个使用MATLAB实现k折交叉验证的代码示例:
```matlab
[M, N] = size(data); % 数据集为一个M*N的矩阵,其中每一行代表一个样本
indices = crossvalind('Kfold', data(1:M, N), k); % 进行随机分包
for fold = 1:k
test_indices = (indices == fold); % 获得当前测试集元素在数据集中对应的单元编号
train_indices = ~test_indices; % 获得当前训练集元素在数据集中对应的单元编号
train_data = data(train_indices, :); % 从数据集中划分出训练样本的数据
train_target = target(:, train_indices); % 获得训练样本集的目标变量
test_data = data(test_indices, :); % 获得测试样本集的数据
test_target = target(:, test_indices); % 获得测试样本集的目标变量
[HammingLoss(fold), RankingLoss(fold), OneError(fold), Coverage(fold), Average_Precision(fold), Outputs, Pre_Labels.MLKNN] = MLKNN_algorithm(train_data, train_target, test_data, test_target); % 要验证的算法
end
```
上述代码将数据集`data`随机分为k个包,每次将其中一个包作为测试集,剩下的k-1个包作为训练集进行训练。在每一次迭代中,我们可以获取到一系列的验证指标(如Hamming Loss、Ranking Loss等)以及MLKNN算法的输出结果。<span class="em">1</span><span class="em">2</span>
#### 引用[.reference_title]
- *1* [MATLAB代码示例,用于将一个字符串添加到字符串数组的末尾(附详细步骤).txt](https://download.csdn.net/download/weixin_44609920/88239228)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *2* [K-折交叉验证(k-fold crossValidation)以及在matlab中的实现](https://blog.csdn.net/Enjolras_fuu/article/details/72190139)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文