蚁群算法实验python背包问题
时间: 2023-12-07 11:38:23 浏览: 152
蚁群算法解决01背包问题
5星 · 资源好评率100%
以下是使用蚁群算法解决0/1背包问题的Python实现:
```python
import random
# 蚂蚁数量
ant_count = 50
# 迭代次数
iterations = 100
# 信息素挥发系数
rho = 0.1
# 信息素强度
Q = 1
# 启发因子
alpha = 1
# 期望因子
beta = 2
# 背包容量
capacity = 50
# 物品数量
item_count = 20
# 物品重量
weights = [random.randint(1, 10) for _ in range(item_count)]
# 物品价值
values = [random.randint(1, 10) for _ in range(item_count)]
# 信息素矩阵
pheromone = [[1.0 for _ in range(item_count)] for _ in range(ant_count)]
# 最优解
best_solution = []
# 最优解的价值
best_value = 0
# 计算蚂蚁i选择物品j的概率
def calculate_probabilities(i, j, solutions):
# 计算分母
denominator = 0.0
for k in range(item_count):
if k not in solutions[i]:
denominator += pow(pheromone[i][k], alpha) * pow(1.0 / weights[k], beta)
# 计算概率
probabilities = []
for k in range(item_count):
if k in solutions[i]:
probabilities.append(0.0)
else:
numerator = pow(pheromone[i][k], alpha) * pow(1.0 / weights[k], beta)
probabilities.append(numerator / denominator)
return probabilities
# 选择物品
def select_item(i, solutions):
probabilities = calculate_probabilities(i, 0, solutions)
r = random.random()
s = 0.0
for k in range(item_count):
s += probabilities[k]
if s >= r:
return k
# 更新信息素
def update_pheromone(solutions):
global pheromone
# 信息素挥发
for i in range(ant_count):
for j in range(item_count):
pheromone[i][j] *= (1.0 - rho)
# 信息素更新
for i in range(ant_count):
solution = solutions[i]
value = 0
for j in range(item_count):
if j in solution:
pheromone[i][j] += Q / value
value += values[j]
# 蚁群算法
def ant_colony():
global best_solution, best_value
# 迭代
for t in range(iterations):
# 每只蚂蚁的解
solutions = [[] for _ in range(ant_count)]
# 每只蚂蚁选择物品
for i in range(ant_count):
solution = solutions[i]
weight = 0
while weight < capacity:
item = select_item(i, solutions)
if weight + weights[item] <= capacity:
solution.append(item)
weight += weights[item]
# 计算解的价值
value = 0
for item in solution:
value += values[item]
# 更新最优解
if value > best_value:
best_solution = solution
best_value = value
# 更新信息素
update_pheromone(solutions)
# 运行蚁群算法
ant_colony()
# 输出结果
print("最优解:", best_solution)
print("最优解的价值:", best_value)
```
阅读全文