confusion_matrix返回得到什么
时间: 2024-01-27 15:05:49 浏览: 72
`confusion_matrix`是一个用于计算分类模型的混淆矩阵的函数。混淆矩阵是一个表格,用于比较分类模型的预测结果和真实结果。它可以帮助我们了解模型的性能,包括准确率、召回率、F1得分等指标。`confusion_matrix`函数返回一个数组,其中行表示真实标签,列表示预测标签。数组中的每个元素表示真实标签和预测标签的组合数量。例如,数组中的第一行第二列表示真实标签为第一类,但被预测为第二类的样本数量。下面是一个使用`confusion_matrix`函数的例子:
```python
from sklearn.metrics import confusion_matrix
y_true = [0, 1, 0, 1, 1, 1]
y_pred = [1, 1, 0, 1, 0, 1]
cm = confusion_matrix(y_true, y_pred)
print(cm)
```
输出结果为:
```
array([[1, 2],
[1, 2]])
```
这个混淆矩阵表示真实标签为0的样本有1个被预测为0,2个被预测为1;真实标签为1的样本有1个被预测为0,2个被预测为1。
相关问题
Compute confusion matrix if compute_confusion_matrix: confusion_matrix(reordered_preds.cpu().numpy(), targets.cpu().numpy(), class_names, confusion_matrix_file) return {'ACC': acc, 'ARI': ari, 'NMI': nmi, 'ACC Top-5': top5, 'hungarian_match': match}
这段代码是一段函数的代码,用于计算聚类或分类模型的性能指标,例如准确率(ACC)、调整兰德指数(ARI)、标准化互信息(NMI)和Top-5准确率(ACC Top-5)。如果`compute_confusion_matrix`参数为True,则还会计算混淆矩阵并将其保存到文件中。函数的输入是预测结果、目标标签、类别名称和混淆矩阵文件的路径。函数返回一个字典,包含计算得到的各项性能指标的值。
def get_y_preds(y_true, cluster_assignments, n_clusters): """ Computes the predicted labels, where label assignments now correspond to the actual labels in y_true (as estimated by Munkres) cluster_assignments: array of labels, outputted by kmeans y_true: true labels n_clusters: number of clusters in the dataset returns: a tuple containing the accuracy and confusion matrix, in that order """ confusion_matrix = metrics.confusion_matrix(y_true, cluster_assignments, labels=None) # compute accuracy based on optimal 1:1 assignment of clusters to labels cost_matrix = calculate_cost_matrix(confusion_matrix, n_clusters) indices = Munkres().compute(cost_matrix) kmeans_to_true_cluster_labels = get_cluster_labels_from_indices(indices) if np.min(cluster_assignments) != 0: cluster_assignments = cluster_assignments - np.min(cluster_assignments) y_pred = kmeans_to_true_cluster_labels[cluster_assignments] return y_pred
这个函数的作用是根据聚类结果和真实标签计算预测标签,并返回准确率和混淆矩阵。让我来解释一下这个函数的算法流程:
1. 使用 `metrics.confusion_matrix` 函数计算混淆矩阵 `confusion_matrix`。混淆矩阵用于比较聚类结果和真实标签的一致性。
2. 使用 `calculate_cost_matrix` 函数计算成本矩阵 `cost_matrix`。成本矩阵表示将聚类分配给标签的成本。
3. 使用 Munkres 算法通过求解最佳分配问题,得到索引列表 `indices`。这些索引用于将聚类与真实标签进行最佳匹配。
4. 使用 `get_cluster_labels_from_indices` 函数获取从索引列表 `indices` 中提取的聚类标签。
5. 如果聚类结果中的最小值不为0,则将聚类结果减去最小值,以便将聚类结果映射到从0开始的标签。
6. 根据聚类结果映射到真实标签的聚类标签数组 `kmeans_to_true_cluster_labels` 和聚类结果数组 `cluster_assignments`,计算预测标签数组 `y_pred`。
7. 返回预测标签数组 `y_pred`。
函数还计算了准确率和混淆矩阵,但在这段代码中没有明确返回,你可以根据需要进行进一步处理。
请注意,该函数依赖于其他函数 `calculate_cost_matrix` 和 `get_cluster_labels_from_indices` 的实现。你需要确保这些函数已经定义并正确实现。
阅读全文