import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms 设置随机种子 torch.manual_seed(42)
时间: 2023-10-31 16:05:27 浏览: 156
这段代码的作用是导入了一些PyTorch库和模块,并设置了随机种子。
- `import torch`:导入PyTorch库,用于进行深度学习任务。
- `import torch.nn as nn`:导入PyTorch中的神经网络模块,用于构建神经网络模型。
- `import torch.optim as optim`:导入PyTorch中的优化器模块,用于优化神经网络的参数。
- `import torchvision`:导入PyTorch中的计算机视觉库,用于处理图像数据。
- `import torchvision.transforms as transforms`:导入PyTorch中的数据转换模块,用于对图像进行预处理和数据增强。
接下来是设置随机种子:
- `torch.manual_seed(42)`:设置PyTorch的随机种子为42,这样可以在需要使用随机性的地方使结果可复现。
相关问题
import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvision.transforms as transforms 分别有什么作用?
import torch: 这是PyTorch库的基础模块,提供了各种用于张量操作和数学计算的函数和类。
import torch.nn as nn: 这是PyTorch中用于构建神经网络的模块,提供了各种层、损失函数等的定义。
import torch.optim as optim: 这是PyTorch中用于优化器的模块,提供了各种优化算法,如SGD、Adam等。
import torchvision: 这是PyTorch中用于处理计算机视觉任务的库,提供了常见的数据集、模型架构和预训练模型等。
import torchvision.transforms as transforms: 这是PyTorch中用于数据预处理和数据增强的模块,提供了各种图像变换操作,如裁剪、缩放、翻转等。
import torch import torch.nn.functional as F import torch.optim as optim from torchvision import transforms from torchvision import datasets from torch.utils. data import DataI oader 补全代码
下面是一个基本的 PyTorch MNIST 数据集训练代码示例,包括数据加载、模型定义、优化器和损失函数的定义以及训练过程。
```
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
# 定义数据预处理
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
# 加载数据集
train_dataset = datasets.MNIST('data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST('data', train=False, download=True, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
# 定义模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2(x), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
net = Net()
# 定义优化器和损失函数
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.5)
criterion = nn.CrossEntropyLoss()
# 训练模型
def train(epoch):
net.train()
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = net(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % 10 == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
def test():
net.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = net(data)
test_loss += criterion(output, target)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
for epoch in range(1, 5):
train(epoch)
test()
```
这是一个简单的卷积神经网络模型,用于对 MNIST 手写数字进行分类。训练过程中使用了交叉熵损失函数和随机梯度下降优化器。