torch.nn.Conv2d参数
时间: 2023-10-30 19:03:19 浏览: 96
pytorch之卷积神经网络nn.conv2d
torch.Conv2d 是 PyTorch 中用于进行二维卷积操作的类,它的参数如下:
```python
torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
```
- `in_channels`:输入图像的通道数。
- `out_channels`:输出图像的通道数,也就是卷积核的个数。
- `kernel_size`:卷积核的大小,可以是一个整数或者一个元组 (kH, kW),表示高度和宽度的大小。
- `stride`:卷积核在输入图像上滑动的步长,默认为 1。
- `padding`:在输入图像的边界周围添加的零填充的层数,默认为 0。
- `dilation`:卷积核元素之间的间隔,默认为 1,如果大于 1,则表示用给定的间隔在输入图像上进行扩展。
- `groups`:将输入通道分组到不同的组中,每个组都有自己对应的卷积核。默认为 1,表示所有输入通道都被连接到每个输出通道。
- `bias`:是否添加偏置,默认为 True。
以上是 Conv2d 类的常用参数,你可以根据自己的需求来设置这些参数。
阅读全文