pytorch heatmap损失
时间: 2023-10-16 09:07:58 浏览: 242
PyTorch中的heatmap损失通常用于目标检测任务中,用于衡量检测结果的准确性。heatmap损失的目标是将网络预测的热力图与真实的标注热力图进行比较,并计算它们之间的差异。
一种常见的heatmap损失是均方误差(Mean Squared Error, MSE)。它计算了网络预测的热力图与真实的标注热力图之间每个像素位置的差异,并求取平均值作为最终的损失值。
以下是一个示例代码,展示了如何计算heatmap损失:
```python
import torch
import torch.nn as nn
def heatmap_loss(pred_heatmap, target_heatmap):
criterion = nn.MSELoss()
loss = criterion(pred_heatmap, target_heatmap)
return loss
# 示例用法
pred_heatmap = torch.randn(1, 3, 64, 64) # 假设网络预测的热力图为 64x64,通道数为 3
target_heatmap = torch.randn(1, 3, 64, 64) # 假设真实的标注热力图也为 64x64,通道数为 3
loss = heatmap_loss(pred_heatmap, target_heatmap)
print(loss)
```
请注意,上述代码仅为示例,实际使用中您可能需要根据自己的任务和数据进行适当的修改。
相关问题
给出一个基于CNN的GAN的对二位数据进行扩充的pytorch代码,该代码还应包括训练损失、测试损失的绘制,混淆矩阵的绘制,以及t-sne可视化
以下是一个基于CNN的GAN的对二维数据进行扩充的PyTorch代码,包括训练和测试损失的绘制,混淆矩阵的绘制和t-sne可视化。
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
from sklearn.metrics import confusion_matrix
import seaborn as sns
import numpy as np
# 定义生成器
class Generator(nn.Module):
def __init__(self, input_dim=10, output_dim=2, hidden_dim=128):
super(Generator, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, output_dim)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义判别器
class Discriminator(nn.Module):
def __init__(self, input_dim=2, output_dim=1, hidden_dim=128):
super(Discriminator, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, hidden_dim)
self.fc3 = nn.Linear(hidden_dim, output_dim)
self.relu = nn.ReLU()
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.sigmoid(self.fc3(x))
return x
# 定义训练函数
def train(discriminator, generator, train_loader, criterion, d_optimizer, g_optimizer, num_epochs):
d_losses = []
g_losses = []
for epoch in range(num_epochs):
d_loss = 0.0
g_loss = 0.0
for i, (real_samples, _) in enumerate(train_loader):
batch_size = real_samples.size(0)
real_samples = real_samples.view(batch_size, -1)
real_samples = real_samples.to(device)
# 训练判别器
d_optimizer.zero_grad()
d_real = discriminator(real_samples)
real_labels = torch.ones(batch_size, 1).to(device)
d_real_loss = criterion(d_real, real_labels)
z = torch.randn(batch_size, 10).to(device)
fake_samples = generator(z)
d_fake = discriminator(fake_samples)
fake_labels = torch.zeros(batch_size, 1).to(device)
d_fake_loss = criterion(d_fake, fake_labels)
d_loss_batch = d_real_loss + d_fake_loss
d_loss_batch.backward()
d_optimizer.step()
# 训练生成器
g_optimizer.zero_grad()
z = torch.randn(batch_size, 10).to(device)
fake_samples = generator(z)
d_fake = discriminator(fake_samples)
real_labels = torch.ones(batch_size, 1).to(device)
g_loss_batch = criterion(d_fake, real_labels)
g_loss_batch.backward()
g_optimizer.step()
d_loss += d_loss_batch.item()
g_loss += g_loss_batch.item()
d_loss /= len(train_loader)
g_loss /= len(train_loader)
d_losses.append(d_loss)
g_losses.append(g_loss)
print("Epoch [{}/{}], d_loss: {:.4f}, g_loss: {:.4f}".format(epoch+1, num_epochs, d_loss, g_loss))
return d_losses, g_losses
# 定义测试函数
def test(discriminator, generator, test_loader, criterion):
discriminator.eval()
generator.eval()
with torch.no_grad():
y_true = []
y_pred = []
for i, (real_samples, labels) in enumerate(test_loader):
batch_size = real_samples.size(0)
real_samples = real_samples.view(batch_size, -1)
real_samples = real_samples.to(device)
d_real = discriminator(real_samples)
y_true.extend(labels.tolist())
y_pred.extend(torch.round(d_real).tolist())
cm = confusion_matrix(y_true, y_pred)
sns.heatmap(cm, annot=True, fmt='g')
plt.xlabel('Predicted label')
plt.ylabel('True label')
plt.show()
z = torch.randn(1000, 10).to(device)
fake_samples = generator(z)
fake_samples = fake_samples.cpu().numpy()
plt.scatter(fake_samples[:,0], fake_samples[:,1], s=5, c='r')
plt.show()
tsne = TSNE(n_components=2)
fake_samples_tsne = tsne.fit_transform(fake_samples)
plt.scatter(fake_samples_tsne[:,0], fake_samples_tsne[:,1], s=5, c='r')
plt.show()
# 定义超参数
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
input_dim = 10
output_dim = 2
hidden_dim = 128
batch_size = 64
num_epochs = 100
lr = 0.0002
beta1 = 0.5
# 加载数据集
train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor(), download=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=True)
# 初始化模型、优化器和损失函数
generator = Generator(input_dim, output_dim, hidden_dim).to(device)
discriminator = Discriminator(output_dim, 1, hidden_dim).to(device)
g_optimizer = optim.Adam(generator.parameters(), lr=lr, betas=(beta1, 0.999))
d_optimizer = optim.Adam(discriminator.parameters(), lr=lr, betas=(beta1, 0.999))
criterion = nn.BCELoss()
# 训练模型
d_losses, g_losses = train(discriminator, generator, train_loader, criterion, d_optimizer, g_optimizer, num_epochs)
# 测试模型
test(discriminator, generator, test_loader, criterion)
```
在训练过程中,每个epoch会输出判别器和生成器的损失。训练结束后,会绘制混淆矩阵、生成的数据的散点图和t-sne可视化图。
写一个用pytorch,VGG16处理jaffe数据集的代码,用cpu,划分训练集,验证集和测试集,给出准确率图,损失图和混淆矩阵
好的,我来回答你的问题。以下是用pytorch和VGG16处理jaffe数据集的代码,给出了准确率图,损失图和混淆矩阵。
首先,导入所需的库:
```
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torchvision
from torchvision import datasets, models, transforms
import numpy as np
import time
import os
import copy
from sklearn.metrics import confusion_matrix
```
然后,定义一些参数:
```
data_dir = "/path/to/jaffe/dataset"
batch_size = 4
num_workers = 4
num_epochs = 25
input_size = 224
learning_rate = 0.001
```
接着,定义数据预处理:
```
data_transforms = {
'train': transforms.Compose([
transforms.Resize(input_size),
transforms.RandomHorizontalFlip(),
transforms.RandomRotation(10),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
]),
'val': transforms.Compose([
transforms.Resize(input_size),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
]),
'test': transforms.Compose([
transforms.Resize(input_size),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
}
```
然后,加载数据集:
```
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val', 'test']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=num_workers) for x in ['train', 'val', 'test']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val', 'test']}
class_names = image_datasets['train'].classes
```
接下来,定义VGG16模型:
```
model_ft = models.vgg16(pretrained=True)
num_ftrs = model_ft.classifier[6].in_features
model_ft.classifier[6] = nn.Linear(num_ftrs, len(class_names))
```
然后,定义损失函数和优化器:
```
criterion = nn.CrossEntropyLoss()
optimizer_ft = optim.SGD(model_ft.parameters(), lr=learning_rate, momentum=0.9)
```
接着,定义学习率调度器:(可选)
```
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
```
然后,定义训练和测试函数:
```
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
train_losses = []
val_losses = []
train_acc = []
val_acc = []
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
if phase == 'train':
scheduler.step()
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
if phase == 'train':
train_losses.append(epoch_loss)
train_acc.append(epoch_acc)
else:
val_losses.append(epoch_loss)
val_acc.append(epoch_acc)
print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:.4f}'.format(best_acc))
model.load_state_dict(best_model_wts)
return model, train_losses, val_losses, train_acc, val_acc
def test_model(model):
model.eval()
test_losses = []
test_acc = []
y_true = []
y_pred = []
with torch.no_grad():
for inputs, labels in dataloaders['test']:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
y_true += labels.cpu().numpy().tolist()
y_pred += preds.cpu().numpy().tolist()
test_losses.append(loss.item() * inputs.size(0))
test_acc.append(torch.sum(preds == labels.data))
epoch_loss = sum(test_losses) / dataset_sizes['test']
epoch_acc = sum(test_acc).double() / dataset_sizes['test']
conf_mat = confusion_matrix(y_true, y_pred)
print('Test Loss: {:.4f} Acc: {:.4f}'.format(epoch_loss, epoch_acc))
print('Confusion Matrix:')
print(conf_mat)
return epoch_loss, epoch_acc, conf_mat
```
最后,运行代码,得到准确率图,损失图和混淆矩阵:
```
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_ft = model_ft.to(device)
criterion = criterion.to(device)
model_ft, train_losses, val_losses, train_acc, val_acc = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs=num_epochs)
test_loss, test_acc, conf_mat = test_model(model_ft)
```
其中,train_losses、val_losses、train_acc和val_acc分别为训练集和验证集上的损失和准确率数组,test_loss、test_acc和conf_mat为测试集上的损失、准确率和混淆矩阵。
我们可以使用matplotlib绘制准确率图和损失图:
```
import matplotlib.pyplot as plt
plt.plot(train_losses, label='Training loss')
plt.plot(val_losses, label='Validation loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.legend()
plt.show()
plt.plot(train_acc, label='Training accuracy')
plt.plot(val_acc, label='Validation accuracy')
plt.xlabel('Epoch')
plt.ylabel('Accuracy')
plt.legend()
plt.show()
```
混淆矩阵可以使用seaborn绘制:
```
import seaborn as sns
sns.heatmap(conf_mat, annot=True, cmap='Blues', xticklabels=class_names, yticklabels=class_names)
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
plt.show()
```
这样就完成了用pytorch和VGG16处理jaffe数据集的代码,并且给出了准确率图,损失图和混淆矩阵。
阅读全文