BAM注意力机制模块
时间: 2024-05-27 15:07:12 浏览: 106
BAM是基于注意力机制的一种网络模型,用于提高模型的性能。BAM模块应用于深度学习模型的瓶颈处,可以分别从通道和空间两个方面对输入进行注意力机制的处理。通道注意力机制可以学习不同通道之间的关系,而空间注意力机制可以学习图像不同位置之间的区别,从而提高模型的鲁棒性和泛化能力。BAM模块的应用可以有效地提高网络的性能,增强模型的特征表达能力,减少计算量,加快网络的收敛速度。
以下是BAM模块的实现示例代码[^1]:
```python
import torch.nn as nn
import torch
class ChannelAttention(nn.Module):
def __init__(self, in_planes, ratio=16):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc1 = nn.Conv2d(in_planes, in_planes // 16, 1, bias=False)
self.relu1 = nn.ReLU()
self.fc2 = nn.Conv2d(in_planes // 16, in_planes, 1, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
out = avg_out + max_out
return self.sigmoid(out)
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttention, self).__init__()
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
padding = 3 if kernel_size == 7 else 1
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
x = torch.cat([avg_out, max_out], dim=1)
x = self.conv1(x)
return self.sigmoid(x)
class BAM(nn.Module):
def __init__(self, in_planes):
super(BAM, self).__init__()
self.ca = ChannelAttention(in_planes)
self.sa = SpatialAttention()
def forward(self, x):
out = self.ca(x) * x
out = self.sa(out) * out
return out
```
阅读全文