sklearn PCA 图像压缩
时间: 2023-09-04 12:11:17 浏览: 120
sklearn库中的PCA(主成分分析)函数可以用于图像压缩。通过使用PCA,可以将图像数据从高维空间降低到较低的维度,从而实现图像压缩。首先,通过加载图像并将其转换为灰度图像,可以得到表示图像的2D数组。然后,使用PCA函数指定所需的主成分数量,对图像数据进行降维。降维后的数据可以通过逆变换重新转换为原始空间。最后,可以根据压缩前后的图像数据之间的误差来评估图像压缩效果。下面是使用sklearn库中的PCA函数进行图像压缩的示例代码:
import numpy as np
from sklearn.decomposition import PCA
from PIL import Image
def loadImage(path):
img = Image.open(path)
img = img.convert("L")
width = img.size
height = img.size
data = img.getdata()
data = np.array(data).reshape(height,width)/100
return data
if __name__ == '__main__':
data = loadImage("timg.jpg")
pca = PCA(n_components=10).fit(data)
x_new = pca.transform(data)
recdata = pca.inverse_transform(x_new)
newImg = Image.fromarray(recdata*100)
newImg.show()
以上示例代码加载了一张图像("timg.jpg"),将其转换为灰度图像,并使用PCA将图像的维度降低到10个主成分。然后,将降维后的数据逆变换回原始空间,并通过Image.fromarray函数将压缩后的图像显示出来。请注意,具体的主成分数量可以根据需要进行调整。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* [在Python中使用K-Means聚类和PCA主成分分析进行图像压缩](https://download.csdn.net/download/weixin_38549327/14910469)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *2* *3* [机器学习之PCA实战(图像压缩还原)](https://blog.csdn.net/Vincent_zbt/article/details/88648739)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文