ValueError Traceback (most recent call last) Cell In[116], line 15 12 clf=DecisionTreeClassifier(random_state=0) 13 rfc=RandomForestClassifier(random_state=0) ---> 15 clf=clf.fit(Xtrain,Ytrain) 16 rfc=rfc.fit(Xtrain,Ytrain) 18 score_c=clf.score(Xtest,Ytest) File D:\QQPCmgr\Anaconda\lib\site-packages\sklearn\tree\_classes.py:889, in DecisionTreeClassifier.fit(self, X, y, sample_weight, check_input) 859 def fit(self, X, y, sample_weight=None, check_input=True): 860 """Build a decision tree classifier from the training set (X, y). 861 862 Parameters (...) 886 Fitted estimator. 887 """ --> 889 super().fit( 890 X, 891 y, 892 sample_weight=sample_weight, 893 check_input=check_input, 894 ) 895 return self File D:\QQPCmgr\Anaconda\lib\site-packages\sklearn\tree\_classes.py:302, in BaseDecisionTree.fit(self, X, y, sample_weight, check_input) 299 max_leaf_nodes = -1 if self.max_leaf_nodes is None else self.max_leaf_nodes 301 if len(y) != n_samples: --> 302 raise ValueError( 303 "Number of labels=%d does not match number of samples=%d" 304 % (len(y), n_samples) 305 ) 307 if sample_weight is not None: 308 sample_weight = _check_sample_weight(sample_weight, X, DOUBLE) ValueError: Number of labels=124 does not match number of samples=622
时间: 2024-02-14 07:29:19 浏览: 113
根据错误信息,你的标签 `Ytrain` 的数量与训练样本 `Xtrain` 的数量不匹配。导致这个错误的可能原因是在划分训练集和测试集时出现了问题。
请确保使用 `train_test_split()` 函数正确划分训练集和测试集,并且确保 `Xtrain` 和 `Ytrain` 的数量相等。可以通过打印 `Xtrain` 和 `Ytrain` 的形状来检查它们的数量是否一致:
```python
print(Xtrain.shape)
print(Ytrain.shape)
```
确保 `Xtrain` 和 `Ytrain` 的形状数量一致后,再运行模型拟合的代码。如果问题仍然存在,请检查你的数据集和划分方法,确保其正确性。
相关问题
解决方法:ValueError Traceback (most recent call last) <ipython-input-4-1b29fd882b35> in <module> 23 y = [1, 1, 0, 0, 0, 1, 0, 0, 1, 1]# 生成决策树 24 clf = DecisionTreeClassifier(random_state=0) ---> 25 clf.fit(X_numerical, y)# 画出决策树 26 plot_tree(clf, feature_names=['日志密度', '好友密度', '是否使用真实头像', '账号是否真实'], class_names=['不被封号', '被封号'], filled=True) D:\Anaconda\lib\site-packages\sklearn\tree\_classes.py in fit(self, X, y, sample_weight, check_input, X_idx_sorted) 896 """ 897 --> 898 super().fit( 899 X, y, 900 sample_weight=sample_weight, D:\Anaconda\lib\site-packages\sklearn\tree\_classes.py in fit(self, X, y, sample_weight, check_input, X_idx_sorted) 279 280 if len(y) != n_samples: --> 281 raise ValueError("Number of labels=%d does not match " 282 "number of samples=%d" % (len(y), n_samples)) 283 if not 0 <= self.min_weight_fraction_leaf <= 0.5: ValueError: Number of labels=10 does not match number of samples=1
这个错误的原因是标签(y)的数量与样本数量不匹配。在这个例子中,标签应该有10个,但是出现了只有1个标签的情况。
根据你的代码,这个错误可能是由于将y定义为只有一个元素而引起的。请确保y的长度与X_numerical的长度相同,即10。
你可以修改代码如下:
```python
# 将数据数值化
X = [['s', 's', 'no', 'no'],
['s', 'l', 'yes', 'yes'],
['l', 'm', 'yes', 'yes'],
['m', 'm', 'yes', 'yes'],
['l', 'm', 'yes', 'yes'],
['m', 'l', 'yes', 'yes'],
['m', 's', 'no', 'no'],
['l', 'm', 'no', 'yes'],
['m', 's', 'no', 'yes'],
['s', 's', 'yes', 'no']]
X_numerical = []
for i in X:
x = []
for j in i:
if j == 's':
x.append(0)
elif j == 'm':
x.append(1)
else:
x.append(2)
X_numerical.append(x)
y = [1, 1, 0, 0, 0, 1, 0, 0, 1, 1]
# 生成决策树
clf = DecisionTreeClassifier(random_state=0)
clf.fit(X_numerical, y)
# 画出决策树
plot_tree(clf, feature_names=['日志密度', '好友密度', '是否使用真实头像', '账号是否真实'], class_names=['不被封号', '被封号'], filled=True)
```
请注意,我将y的长度从1更改为10,以匹配X_numerical的长度。
Traceback (most recent call last): File "D:\jiqixuexi\main.py", line 16, in <module> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=202121121078) File "D:\2023.5.21\lib\site-packages\sklearn\model_selection\_split.py", line 2583, in train_test_split train, test = next(cv.split(X=arrays[0], y=stratify)) File "D:\2023.5.21\lib\site-packages\sklearn\model_selection\_split.py", line 1689, in split for train, test in self._iter_indices(X, y, groups): File "D:\2023.5.21\lib\site-packages\sklearn\model_selection\_split.py", line 1829, in _iter_indices rng = check_random_state(self.random_state) File "D:\2023.5.21\lib\site-packages\sklearn\utils\validation.py", line 1226, in check_random_state return np.random.RandomState(seed) File "mtrand.pyx", line 185, in numpy.random.mtrand.RandomState.__init__ File "_mt19937.pyx", line 166, in numpy.random._mt19937.MT19937._legacy_seeding File "_mt19937.pyx", line 180, in numpy.random._mt19937.MT19937._legacy_seeding ValueError: Seed must be between 0 and 2**32 - 1是什么错误,该怎么修改
这个错误提示说明随机种子的取值必须在 0 和 2^32-1 之间,而你的随机种子值 202121121078 超出了这个范围,导致代码出错。
你可以将随机种子的值改为一个在这个范围内的整数,例如:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
这里将随机种子的值设为了 42,这是一个常用的随机种子值。
阅读全文