Traceback (most recent call last): File "D:\anaconda\lib\site-packages\sklearn\utils\validation.py", line 879, in check_array array = _asarray_with_order(array, order=order, dtype=dtype, xp=xp) File "D:\anaconda\lib\site-packages\sklearn\utils\_array_api.py", line 185, in _asarray_with_order array = numpy.asarray(array, order=order, dtype=dtype) numpy.ComplexWarning: Casting complex values to real discards the imaginary part The above exception was the direct cause of the following exception: Traceback (most recent call last): File "C:\Users\86157\PycharmProjects\pythonProject8\6.py", line 54, in <module> clustering = SpectralClustering(n_clusters=n_clusters, assign_labels="discretize", random_state=0).fit(Y) File "D:\anaconda\lib\site-packages\sklearn\cluster\_spectral.py", line 706, in fit X = self._validate_data( File "D:\anaconda\lib\site-packages\sklearn\base.py", line 546, in _validate_data X = check_array(X, input_name="X", **check_params) File "D:\anaconda\lib\site-packages\sklearn\utils\validation.py", line 881, in check_array raise ValueError( ValueError: Complex data not supported [[-0.00667798+0.j -0.00050094+0.j] [-0.00679108+0.j 0.00760181+0.j] [-0.0068003 +0.j -0.00274455+0.j] ... [-0.00512369+0.j 0.02043165+0.j] [-0.01293088+0.j -0.00562299+0.j] [ 0.03972433+0.j -0.01824531+0.j]]
时间: 2023-09-28 14:04:05 浏览: 189
这段代码出现了一个值错误(ValueError)异常,原因是输入的数据包含了复数(complex)类型的值,但是SpectralClustering类不支持处理复数类型的数据。具体地说,异常的堆栈跟踪显示,在调用sklearn.utils.validation.check_array()函数时,检测到输入数组包含了复数类型的值,因此抛出一个异常。这个异常被直接捕获,并且抛出了一个新的值错误异常,指示输入数据不支持复数类型。如果要使用SpectralClustering类对这个数据进行聚类,需要先将复数类型的值转换为实数类型的值。
相关问题
Traceback (most recent call last): File "C:\Users\www12\Desktop\AdaBoost\adaboost.py", line 29, in <module> bdt.fit(X, y) File "E:\anaconda\lib\site-packages\sklearn\ensemble\_weight_boosting.py", line 126, in fit X, y = self._validate_data( File "E:\anaconda\lib\site-packages\sklearn\base.py", line 565, in _validate_data X, y = check_X_y(X, y, **check_params) File "E:\anaconda\lib\site-packages\sklearn\utils\validation.py", line 1124, in check_X_y check_consistent_length(X, y) File "E:\anaconda\lib\site-packages\sklearn\utils\validation.py", line 397, in check_consistent_length raise ValueError( ValueError: Found input variables with inconsistent numbers of samples: [2, 9396]
这是一个 Python 错误追踪(traceback),它表明您的代码在执行期间遇到了一个异常错误。错误信息指出您的输入数据 `X` 和标签 `y` 的样本数不一致。可能是因为您的数据处理过程中发生了错误,导致数据样本数不一致。您可以检查数据处理的过程,确保输入数据 `X` 和标签 `y` 的样本数一致。如果问题仍然存在,您可以尝试使用 `pandas` 或 `numpy` 等工具来处理数据,确保数据样本数一致。
Traceback (most recent call last): File "C:\Users\www12\Desktop\AdaBoost\adaboost.py", line 28, in <module> bdt.fit(X, y) File "E:\anaconda\lib\site-packages\sklearn\ensemble\_weight_boosting.py", line 126, in fit X, y = self._validate_data( File "E:\anaconda\lib\site-packages\sklearn\base.py", line 565, in _validate_data X, y = check_X_y(X, y, **check_params) File "E:\anaconda\lib\site-packages\sklearn\utils\validation.py", line 1122, in check_X_y y = _check_y(y, multi_output=multi_output, y_numeric=y_numeric, estimator=estimator) File "E:\anaconda\lib\site-packages\sklearn\utils\validation.py", line 1143, in _check_y y = column_or_1d(y, warn=True) File "E:\anaconda\lib\site-packages\sklearn\utils\validation.py", line 1202, in column_or_1d raise ValueError( ValueError: y should be a 1d array, got an array of shape (2, 4698) instead.
这是一个 Python 错误追踪(traceback),它表明您的代码在执行期间遇到了一个异常错误。错误信息指出您的代码期望得到一个一维数组,但实际上得到的是一个二维数组。可能是因为您的标签 `y` 数据的维度不正确,您可以使用 `ravel()` 函数将标签 `y` 数据转换为一维数组,例如:
``` python
y = y.ravel()
```
这样就能将二维数组转换为一维数组,再传入您的模型中进行训练。
阅读全文