蒙哥马利算法 RSA
时间: 2024-06-02 08:05:37 浏览: 208
蒙哥马利算法是一种用于计算 RSA 加密算法中的加解密过程中的模重复平方的优化算法。在 RSA 算法中,加解密涉及到大数模幂运算,通常使用快速幂算法来加速计算。而蒙哥马利算法则是对快速幂算法的进一步优化。
简单来说,蒙哥马利算法就是通过一定的变换方式将大数模幂运算转化为小数模幂运算,从而加速计算。这种转换方式需要选择一个适当的基值,通常是 2 的某个次幂,以便于进行位运算。
RSA 算法是一种公钥加密算法,其中涉及到大数的加解密和数字签名等操作。它可以保证通信内容的机密性、完整性和可验证性,并被广泛应用于信息安全领域。
相关问题
rsa 模重复平方 蒙哥马利算法 中国剩余定理代码实现
以下是Python语言的代码实现:
1. RSA算法
加密:
```python
from Crypto.PublicKey import RSA
from Crypto.Cipher import PKCS1_OAEP
# 生成RSA公私钥
key = RSA.generate(2048)
# 保存公私钥
private_key = key.export_key()
public_key = key.publickey().export_key()
# 使用公钥加密
cipher = PKCS1_OAEP.new(RSA.import_key(public_key))
ciphertext = cipher.encrypt(b'plaintext')
```
解密:
```python
from Crypto.PublicKey import RSA
from Crypto.Cipher import PKCS1_OAEP
# 使用私钥解密
cipher = PKCS1_OAEP.new(RSA.import_key(private_key))
plaintext = cipher.decrypt(ciphertext)
```
2. 模重复平方算法
```python
def mod_exp(base, exponent, modulus):
result = 1
while exponent > 0:
if exponent % 2 == 1:
result = (result * base) % modulus
exponent //= 2
base = (base * base) % modulus
return result
```
3. 蒙哥马利算法
```python
def montgomery_reduction(x, r, n, n_inv):
# Step 1
m = (x * r) % n
# Step 2
t = (x + m * n) * n_inv % r
# Step 3
if t >= r:
return t - r
else:
return t
def mod_exp_montgomery(base, exponent, modulus):
# Step 1
r = 1
while r < modulus:
r <<= 1
# Step 2
n_inv = pow(modulus, -1, r)
# Step 3
base = (base * r) % modulus
# Step 4
x = r % modulus
for i in reversed(bin(exponent)[2:]):
if i == '1':
x = montgomery_reduction(x * base, r, modulus, n_inv)
base = montgomery_reduction(base * base, r, modulus, n_inv)
# Step 5
return montgomery_reduction(x, r, modulus, n_inv)
```
4. 中国剩余定理
```python
def chinese_remainder_theorem(c, n):
# Step 1
N = 1
for ni in n:
N *= ni
# Step 2
x = 0
for ni, ci in zip(n, c):
Ni = N // ni
Mi = pow(Ni, -1, ni)
x += ci * Ni * Mi
# Step 3
return x % N
```
rsa 应用模重复平方 蒙哥马利算法 中国剩余定理C语言代码实现
以下是C语言的代码实现:
1. RSA算法
加密:
```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/rsa.h>
#include <openssl/pem.h>
int main() {
// 生成RSA公私钥
RSA *key = RSA_generate_key(2048, RSA_F4, NULL, NULL);
// 保存公私钥
FILE *f;
f = fopen("private_key.pem", "w");
PEM_write_RSAPrivateKey(f, key, NULL, NULL, 0, NULL, NULL);
fclose(f);
f = fopen("public_key.pem", "w");
PEM_write_RSAPublicKey(f, key);
fclose(f);
// 使用公钥加密
char plaintext[] = "hello world";
size_t plaintext_len = strlen(plaintext);
unsigned char ciphertext[256];
RSA_public_encrypt(plaintext_len, (unsigned char *)plaintext, ciphertext, key, RSA_PKCS1_OAEP_PADDING);
return 0;
}
```
解密:
```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <openssl/rsa.h>
#include <openssl/pem.h>
int main() {
// 读取私钥
FILE *f;
f = fopen("private_key.pem", "r");
RSA *key = RSA_new();
key = PEM_read_RSAPrivateKey(f, &key, NULL, NULL);
fclose(f);
// 使用私钥解密
unsigned char plaintext[256];
size_t plaintext_len = RSA_private_decrypt(sizeof(ciphertext), ciphertext, plaintext, key, RSA_PKCS1_OAEP_PADDING);
return 0;
}
```
2. 模重复平方算法
```c
#include <stdio.h>
#include <stdint.h>
uint64_t mod_exp(uint64_t base, uint64_t exponent, uint64_t modulus) {
uint64_t result = 1;
while (exponent > 0) {
if (exponent & 1) {
result = (result * base) % modulus;
}
exponent >>= 1;
base = (base * base) % modulus;
}
return result;
}
```
3. 蒙哥马利算法
```c
#include <stdio.h>
#include <stdint.h>
uint64_t montgomery_reduction(uint64_t x, uint64_t r, uint64_t n, uint64_t n_inv) {
// Step 1
uint64_t m = (x * r) % n;
// Step 2
uint64_t t = (x + m * n) * n_inv % r;
// Step 3
if (t >= r) {
return t - r;
} else {
return t;
}
}
uint64_t mod_exp_montgomery(uint64_t base, uint64_t exponent, uint64_t modulus) {
// Step 1
uint64_t r = 1;
while (r < modulus) {
r <<= 1;
}
// Step 2
uint64_t n_inv = -modulus % r;
// Step 3
base = (base * r) % modulus;
// Step 4
uint64_t x = r % modulus;
while (exponent > 0) {
if (exponent & 1) {
x = montgomery_reduction(x * base, r, modulus, n_inv);
}
base = montgomery_reduction(base * base, r, modulus, n_inv);
exponent >>= 1;
}
// Step 5
return montgomery_reduction(x, r, modulus, n_inv);
}
```
4. 中国剩余定理
```c
#include <stdio.h>
#include <stdint.h>
uint64_t chinese_remainder_theorem(uint64_t *c, uint64_t *n, uint64_t len) {
// Step 1
uint64_t N = 1;
for (int i = 0; i < len; i++) {
N *= n[i];
}
// Step 2
uint64_t x = 0;
for (int i = 0; i < len; i++) {
uint64_t Ni = N / n[i];
uint64_t Mi = mod_exp_montgomery(Ni, n[i] - 2, n[i]);
x += c[i] * Ni * Mi % N;
}
// Step 3
return x % N;
}
```
阅读全文