yolov8模型改进方法
时间: 2024-05-02 07:15:42 浏览: 115
yolov8模型长方形尺寸onnx部署,可减少一般参数,性能提升一倍
YOLOv8是YOLO(You Only Look Once)系列目标检测模型的最新版本,它在YOLOv4的基础上进行了改进和优化。以下是YOLOv8模型的改进方法:
1. CSPDarknet53骨干网络:YOLOv8使用了CSPDarknet53作为骨干网络,相比于YOLOv4中的Darknet53,CSPDarknet53在保持准确性的同时减少了计算量。
2. PANet特征融合:YOLOv8引入了PANet(Path Aggregation Network)来进行多尺度特征融合。PANet可以有效地将不同尺度的特征进行融合,提升了模型对小目标的检测能力。
3. FPN特征金字塔:YOLOv8还采用了FPN(Feature Pyramid Network)来构建特征金字塔。FPN可以通过自上而下和自下而上的方式,将不同层级的特征进行融合,使得模型可以同时关注不同尺度的目标。
4. CIoU损失函数:YOLOv8使用了CIoU(Complete Intersection over Union)作为目标检测的损失函数。CIoU损失函数相比于传统的IoU损失函数,考虑了目标框的位置、大小和形状等因素,能够更准确地评估目标检测的质量。
5. 数据增强策略:YOLOv8在训练过程中采用了一系列的数据增强策略,如随机缩放、随机裁剪、颜色抖动等,增加了模型对不同场景和变化的适应能力。
阅读全文