pytorch LSTM编解码
时间: 2023-11-30 20:43:13 浏览: 138
LSTM-SAE(长短期记忆-堆叠式自动编码器)的Pytorch.zip
5星 · 资源好评率100%
以下是使用PyTorch实现LSTM编解码的示例代码:
```python
import torch
import torch.nn as nn
class Encoder(nn.Module):
def __init__(self, input_size, hidden_size, num_layers=1):
super(Encoder, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
def forward(self, x):
# 初始化隐状态和细胞状态
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
# 前向传播LSTM
out, (hn, cn) = self.lstm(x, (h0, c0))
return out, hn, cn
class Decoder(nn.Module):
def __init__(self, input_size, hidden_size, output_size, num_layers=1):
super(Decoder, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x, hn, cn):
# 初始化隐状态和细胞状态
h0 = hn
c0 = cn
# 前向传播LSTM
out, (hn, cn) = self.lstm(x, (h0, c0))
out = self.fc(out)
return out, hn, cn
class Seq2Seq(nn.Module):
def __init__(self, input_size, hidden_size, output_size, num_layers=1):
super(Seq2Seq, self).__init__()
self.encoder = Encoder(input_size, hidden_size, num_layers)
self.decoder = Decoder(input_size, hidden_size, output_size, num_layers)
def forward(self, x, y):
# 编码器前向传播
out, hn, cn = self.encoder(x)
# 解码器前向传播
out, hn, cn = self.decoder(y, hn, cn)
return out
```
上述代码实现了一个简单的Seq2Seq模型,其中编码器使用LSTM对输入序列进行编码,解码器使用LSTM对输出序列进行解码。可以根据需要调整模型的输入输出大小、隐藏层大小和层数等参数。
阅读全文