使用pytorch将cnn与lstm连接
时间: 2024-04-29 12:26:00 浏览: 101
project2_pytorch实现lstm_
5星 · 资源好评率100%
可以使用PyTorch中的nn.Sequential()模块将一个CNN模型和一个LSTM模型连接起来,实现对序列数据的分类或者预测。具体步骤如下:
1. 定义CNN模型和LSTM模型,分别使用nn.Conv2d()和nn.LSTM()等模块搭建网络。
2. 根据CNN输出的特征图大小,将其压缩成一维向量,以便于LSTM进行处理。
3. 构建一个nn.Sequential()模块,将CNN和LSTM逐层连接起来。
4. 将输入数据传入nn.Sequential()模块进行分类或预测。
具体实现方式可以参考以下代码:
```python
import torch
import torch.nn as nn
# 定义CNN模型
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 3, 1, 1)
self.conv2 = nn.Conv2d(16, 32, 3, 1, 1)
self.pool = nn.MaxPool2d(2, 2)
def forward(self, x):
x = self.conv1(x)
x = nn.functional.relu(x)
x = self.pool(x)
x = self.conv2(x)
x = nn.functional.relu(x)
x = self.pool(x)
# x size: (batch_size, channel, height, width)
# 压成一维向量
x = x.view(x.size(0), -1)
return x
# 定义LSTM模型
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes):
super(LSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, num_classes)
def forward(self, x):
# 设置初始隐状态和细胞状态
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(x.device)
# 前向传播
out, _ = self.lstm(x, (h0, c0))
# 解码预测结果
out = self.fc(out[:, -1, :])
return out
# 使用nn.Sequential()连接CNN和LSTM
class CNN_LSTM(nn.Module):
def __init__(self):
super(CNN_LSTM, self).__init__()
self.cnn = CNN()
self.lstm = LSTM(32*7*7, 128, 1, 10)
def forward(self, x):
# 前向传播
x = self.cnn(x)
x = x.view(-1, 32, 7*7)
x = self.lstm(x)
return x
# 使用示例
model = CNN_LSTM()
inputs = torch.randn(4, 3, 32, 32)
outputs = model(inputs) # outputs size: (4, 10)
```
阅读全文