使用pytorch实现CNN和LSTM并列的文本分类代码
时间: 2023-02-07 19:38:56 浏览: 169
好的,这是一份使用 PyTorch 实现 CNN 和 LSTM 并列的文本分类代码的示例:
```python
import torch
import torch.nn as nn
class TextClassifier(nn.Module):
def __init__(self, vocab_size, embedding_dim, cnn_num_filters, cnn_filter_sizes, lstm_hidden_dim, output_dim, dropout):
super().__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.cnn = nn.ModuleList([
nn.Conv2d(in_channels=1, out_channels=cnn_num_filters, kernel_size=(fs, embedding_dim))
for fs in cnn_filter_sizes
])
self.lstm = nn.LSTM(embedding_dim, lstm_hidden_dim, bidirectional=True, batch_first=True)
self.fc = nn.Linear(lstm_hidden_dim*2+len(cnn_filter_sizes)*cnn_num_filters, output_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
# x.shape = (batch_size, seq_len)
x = x.permute(1, 0) # (seq_len, batch_size)
embedded = self.dropout(self.embedding(x)) # (seq_len, batch_size, embedding_dim)
embedded = embedded.unsqueeze(1) # (seq_len, 1, batch_size, embedding_dim)
cnn_outputs = [torch.relu(conv(embedded)).squeeze(3) for conv in self.cnn] # [(batch_size, num_filters), ...]*len(filter_sizes)
cnn_outputs = [torch.max_pool1d(i, i.size(2)).squeeze(2) for i in cnn_outputs] # [(batch_size, num_filters), ...]*len(filter_sizes)
lstm_output, (hidden, cell) = self.lstm(embedded)
hidden = self.dropout(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim=1)) # (batch_size, lstm_hidden_dim*2)
concat = torch.cat((cnn_outputs, hidden), dim=1) # (batch_size, num_filters*len(filter_sizes)+lstm_hidden_dim*2)
logits = self.fc(concat) # (batch_size, output_dim)
return logits
```
在这段代码中,我们定义了一个名为 `TextClassifier`
阅读全文