最小费用最大流算法解释
时间: 2023-11-10 22:04:22 浏览: 99
最小费用最大流算法是一种在网络流问题中求解最大流的算法,同时也考虑了每条边的费用,使得在满足最大流的前提下,费用最小。以下是最小费用最大流算法的实现代码:
```matlab
function [maxFlow, minCost] = minCostMaxFlow(capacity, cost, source, sink)
% capacity: 网络流图中每条边的容量
% cost: 网络流图中每条边的费用
% source: 源点
% sink: 汇点
% maxFlow: 最大流量
% minCost: 最小费用
n = length(capacity);
flow = zeros(n); % 流量矩阵
costMatrix = cost; % 费用矩阵
while true
% 使用 Dijkstra 算法寻找增广路径
[dist, prev] = dijkstra(costMatrix, source);
if prev(sink) == -1 % 如果不存在增广路径,则退出循环
break;
end
% 计算增广路径上的最小容量
minCapacity = inf;
node = sink;
while node ~= source
prevNode = prev(node);
minCapacity = min(minCapacity, capacity(prevNode, node) - flow(prevNode, node));
node = prevNode;
end
% 更新流量矩阵和费用矩阵
node = sink;
while node ~= source
prevNode = prev(node);
flow(prevNode, node) = flow(prevNode, node) + minCapacity;
flow(node, prevNode) = flow(node, prevNode) - minCapacity;
costMatrix(prevNode, node) = cost(prevNode, node) - dist(sink) + dist(prevNode);
costMatrix(node, prevNode) = cost(node, prevNode) + dist(sink) - dist(prevNode);
node = prevNode;
end
end
% 计算最大流量和最小费用
maxFlow = sum(flow(source, :));
minCost = sum(flow.*cost);
end
function [dist, prev] = dijkstra(costMatrix, source)
% 使用 Dijkstra 算法寻找增广路径
n = length(costMatrix);
dist = inf(1, n);
prev = -ones(1, n);
visited = false(1, n);
dist(source) = 0;
for i = 1:n
% 找到未访问节点中距离最小的节点
[~, u] = min(dist .* ~visited);
if isinf(dist(u))
break;
end
visited(u) = true;
% 更新与 u 相邻的节点的距离
for v = 1:n
if ~visited(v) && costMatrix(u, v) < inf
alt = dist(u) + costMatrix(u, v);
if alt < dist(v)
dist(v) = alt;
prev(v) = u;
end
end
end
end
end
```
阅读全文