geotools 克里金 插值图

时间: 2024-03-18 15:36:31 浏览: 182
Geotools是一个开源的Java库,用于处理地理空间数据和构建地理信息系统(GIS)应用程序。它提供了一系列功能强大的工具和算法,用于处理、分析和可视化地理空间数据。 克里金插值是一种常用的地理空间数据插值方法,用于根据已知的离散点数据推断未知位置的值。它基于克里金理论,通过对已知点的空间关系进行建模,来估计未知点的属性值。 在Geotools中,克里金插值可以通过使用GridCoverage2D对象和相应的插值算法来实现。Geotools提供了多种插值算法,包括克里金插值、反距离权重插值、三角网插值等。你可以根据具体的需求选择适合的插值算法,并使用Geotools提供的API进行插值操作。 如果你需要更详细的介绍或者有其他相关问题,请告诉我。
相关问题

java 克里金插值

克里金插值(Kriging Interpolation)是一种空间插值方法,主要用于估计未知位置的数值或属性值。在Java中实现克里金插值可以使用第三方库,例如GeoTools、JTS Topology Suite等。下面以GeoTools为例给出实现代码: ```java import org.geotools.data.DataUtilities; import org.geotools.geometry.jts.JTSFactoryFinder; import org.geotools.grid.GridCoverage2D; import org.geotools.grid.GridCoverageFactory; import org.geotools.grid.Interpolator; import org.geotools.referencing.CRS; import org.geotools.referencing.crs.DefaultGeographicCRS; import org.locationtech.jts.geom.Coordinate; import org.locationtech.jts.geom.GeometryFactory; import javax.measure.quantity.Length; import javax.measure.unit.SI; import org.opengis.coverage.grid.GridCoordinates; import org.opengis.coverage.grid.GridEnvelope; import org.opengis.geometry.Envelope; import org.opengis.referencing.crs.CoordinateReferenceSystem; import org.opengis.referencing.operation.MathTransform; import org.opengis.referencing.operation.TransformException; public class KrigingInterpolation { public static void main(String[] args) throws TransformException { // 输入数据点坐标和属性值 Coordinate[] inputPoints = { new Coordinate(0, 0), new Coordinate(1, 0), new Coordinate(2, 0), new Coordinate(0, 1), new Coordinate(1, 1), new Coordinate(2, 1), new Coordinate(0, 2), new Coordinate(1, 2), new Coordinate(2, 2) }; double[] inputValues = {10, 20, 30, 15, 25, 35, 20, 30, 40}; // 创建插值器 GeometryFactory geometryFactory = JTSFactoryFinder.getGeometryFactory(); Interpolator interpolator = new org.geotools.grid.kriging.KrigingInterpolator(geometryFactory); // 创建输入数据点的Geometry org.geotools.geometry.DirectPositionList positionList = new org.geotools.geometry.DirectPositionList(); for (Coordinate inputPoint : inputPoints) { positionList.add(new org.geotools.geometry.DirectPosition(inputPoint.x, inputPoint.y)); } org.locationtech.jts.geom.Point inputPointGeom = geometryFactory.createMultiPointFromCoords(positionList.toArray(new org.locationtech.jts.geom.Coordinate[positionList.size()])).getCentroid(); // 创建输入数据点的属性值Feature org.geotools.feature.simple.SimpleFeatureType featureType = DataUtilities.createType("Input", "geom:Point:srid=4326,value:Double"); org.geotools.feature.simple.SimpleFeatureBuilder featureBuilder = new org.geotools.feature.simple.SimpleFeatureBuilder(featureType); featureBuilder.add(inputPointGeom); featureBuilder.add(10.0); org.geotools.feature.simple.SimpleFeature feature = featureBuilder.buildFeature("1"); feature.setDefaultGeometry(inputPointGeom); // 创建GridEnvelope和Envelope GridEnvelope gridEnvelope = new org.geotools.grid.GridEnvelope2D(new int[]{0, 0}, new int[]{2, 2}); Envelope envelope = new org.geotools.geometry.EnvelopeImpl(new Coordinate(0, 0), new Coordinate(2, 2), DefaultGeographicCRS.WGS84); // 创建输出GridCoverage2D GridCoverageFactory gridCoverageFactory = new org.geotools.grid.GridCoverageFactory(); GridCoverage2D outputGridCoverage2D = gridCoverageFactory.create("Output", feature, gridEnvelope, envelope); // 设置插值参数 interpolator.setSearchRadius(10.0); interpolator.setSigma(100.0); interpolator.setAlpha(1.0); // 插值 GridCoverage2D interpolatedGridCoverage2D = interpolator.interpolate(outputGridCoverage2D, inputPoints, inputValues); // 输出插值结果 System.out.println("Interpolated grid coverage:"); for (int i = 0; i < interpolatedGridCoverage2D.getNumRows(); i++) { for (int j = 0; j < interpolatedGridCoverage2D.getNumCols(); j++) { GridCoordinates gridCoordinates = new org.geotools.grid.GridCoordinates2D(i, j); org.opengis.geometry.DirectPosition directPosition = interpolatedGridCoverage2D.getGridGeometry().gridToWorld(gridCoordinates); double value = interpolatedGridCoverage2D.evaluate(directPosition).doubleValue(SI.METER); System.out.print(value + " "); } System.out.println(); } } } ``` 上述代码中,首先定义了输入数据点坐标和属性值,然后创建了克里金插值器对象。接着通过GeoTools创建输入数据点的Geometry和属性值Feature,以及GridEnvelope和Envelope,最后用这些对象创建输出GridCoverage2D。在插值前,设置了插值参数。最后调用插值器的interpolate方法进行插值,并输出插值结果。

克里金插值代码java

克里金插值是一种常用的空间插值方法,它可以根据已知的离散点数据,预测出任意一点的值。在GIS、环境监测、气象等领域具有广泛应用。Java语言是一种高度集成的、基于类的面向对象编程语言,其可移植性和广泛性也使得其成为一种非常适合开发科学计算和统计应用的编程语言之一。 实现克里金插值的Java代码可以使用各种开源库或API,如Apache(Commons Math)、GeoTools、JGrace等。下面以Apache Commons Math为例,给出一段简单的克里金插值代码示例: 1. 定义输入数据数组double[][] dataArray,以及待插值点double[] point。 2. 引入org.apache.commons.math3.stat.regression模块中的OLSMultipleLinearRegression类,创建回归模型regression。 3. 设置回归方程的阶数order和变量个数variables,并使用regression的setDegree()和newSampleData()方法来初始化回归模型。 4. 使用regression的estimate()方法估算待插值点的函数值。 具体的代码实现如下: ``` import org.apache.commons.math3.stat.regression.OLSMultipleLinearRegression; public class KrigingInterpolation { public static void main(String[] args) { //输入数据 double[][] dataArray = { {1.0, 2.0, 3.0}, {4.0, 5.0, 6.0}, {7.0, 8.0, 9.0} }; //待插值点 double[] point = {2.5, 4.5}; //创建回归模型 OLSMultipleLinearRegression regression = new OLSMultipleLinearRegression(); //回归方程阶数与变量个数 int order = 1; int variables = 2; //初始化回归模型 regression.setDegree(order); regression.newSampleData(dataArray, point.length, variables); //插值预测 double predictedValue = regression.estimate(point); System.out.println("插值结果:" + predictedValue); } } ``` 要注意的是,该代码仅是一个示例,实际使用时需要根据具体的问题和输入数据进行适当修改和调整,以达到更准确的插值预测效果。另外,还要注意Java代码的编写风格,保证代码的可读性、可维护性和可扩展性,以便后续的应用和开发。
阅读全文

相关推荐

大家在看

recommend-type

MotorContral.rar_VC++ 电机控制_上位机_电机_电机 上位机_电机vc上位机

这是电机控制方面上位机程序,需要vc++6.0开发,对学习电机控制很有帮助.
recommend-type

一种基于STM32的智能交通信号灯设计的研究.rar

一种基于STM32的智能交通信号灯设计的研究.rar
recommend-type

中国AI安防行业:Ambarella业绩反映AI需求强劲.zip

中国AI安防行业:Ambarella业绩反映AI需求强劲
recommend-type

【答题卡识别】 Hough变换答题卡识别【含Matlab源码 250期】.zip

Matlab领域上传的代码均可运行,亲测可用,直接替换数据即可,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作 图像识别:表盘识别、车道线识别、车牌识别、答题卡识别、电器识别、跌倒检测、动物识别、发票识别、服装识别、汉字识别、红绿灯识别、火灾检测、疾病分类、交通标志牌识别、口罩识别、裂缝识别、目标跟踪、疲劳检测、身份证识别、人民币识别、数字字母识别、手势识别、树叶识别、水果分级、条形码识别、瑕疵检测、芯片识别、指纹识别
recommend-type

挖掘机叉车工程车辆检测数据集VOC+YOLO格式5067张7类别.7z

集格式:Pascal VOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):5067 标注数量(xml文件个数):5067 标注数量(txt文件个数):5067 标注类别数:7 标注类别名称:[“ConcreteTruck”,“Excavator”,“Forklift”,“Loader”,“Steamroller”,“Truck”,“Worker”] 对应中文名:[“混凝土运输车”、“挖掘机”、“叉车”、“装载机”、“压路机”、”卡车“、”工人“] 更多信息:https://blog.csdn.net/FL1623863129/article/details/142093679

最新推荐

recommend-type

基于springboot的酒店管理系统源码(java毕业设计完整源码+LW).zip

项目均经过测试,可正常运行! 环境说明: 开发语言:java JDK版本:jdk1.8 框架:springboot 数据库:mysql 5.7/8 数据库工具:navicat 开发软件:eclipse/idea
recommend-type

蓄电池与超级电容混合储能并网matlab simulink仿真模型 (1)混合储能采用低通滤波器进行功率分配,可有效抑制功率波动,并对超级电容的soc进行能量管理,soc较高时多放电,较低时少放电

蓄电池与超级电容混合储能并网matlab simulink仿真模型。 (1)混合储能采用低通滤波器进行功率分配,可有效抑制功率波动,并对超级电容的soc进行能量管理,soc较高时多放电,较低时少放电,soc较低时状态与其相反。 (2)蓄电池和超级电容分别采用单环恒流控制,研究了基于超级电容的SOC分区限值管理策略,分为放电下限区,放电警戒区,正常工作区,充电警戒区,充电上限区。 (3)采用三相逆变并网,将直流侧800v电压逆变成交流311v并网,逆变采用电压电流双闭环pi控制,pwm调制。 附有参考资料。
recommend-type

017 - 搞笑一句话台词.docx

017 - 搞笑一句话台词
recommend-type

基于微信小程序的购物系统+php后端毕业源码案例设计全部资料+详细文档.zip

【资源说明】 基于微信小程序的购物系统+php后端毕业源码案例设计全部资料+详细文档.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

基于APS.net的办公物品管理系统全部资料+详细文档.zip

【资源说明】 基于APS.net的办公物品管理系统全部资料+详细文档.zip 【备注】 1、该项目是个人高分项目源码,已获导师指导认可通过,答辩评审分达到95分 2、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 3、本项目适合计算机相关专业(人工智能、通信工程、自动化、电子信息、物联网等)的在校学生、老师或者企业员工下载使用,也可作为毕业设计、课程设计、作业、项目初期立项演示等,当然也适合小白学习进阶。 4、如果基础还行,可以在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"