克里金插值算法java
时间: 2023-07-10 19:17:21 浏览: 524
克里金插值算法(Kriging Interpolation)是一种用于空间插值的经典算法。在Java语言中,可以使用GeoTools库中的KrigingInterpolator类来实现克里金插值算法。
下面是一个简单的克里金插值算法示例代码:
```java
import org.geotools.coverage.grid.GridCoverage2D;
import org.geotools.coverage.grid.io.GridCoverage2DReader;
import org.geotools.gce.arcgrid.ArcGridReader;
import org.geotools.factory.CommonFactoryFinder;
import org.geotools.geometry.jts.ReferencedEnvelope;
import org.geotools.referencing.CRS;
import org.geotools.referencing.crs.DefaultGeographicCRS;
import org.opengis.coverage.grid.GridCoordinates;
import org.opengis.coverage.grid.GridGeometry;
import org.opengis.coverage.grid.GridSampleDimension;
import org.opengis.geometry.Envelope;
import org.opengis.parameter.ParameterValueGroup;
import org.opengis.referencing.crs.CoordinateReferenceSystem;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import javax.media.jai.JAI;
import javax.media.jai.RenderedOp;
import org.geotools.coverage.grid.GridCoverageFactory;
import org.geotools.coverage.grid.GridCoverageFactoryFinder;
import org.geotools.coverage.grid.Interpolator2D;
import org.geotools.coverage.grid.io.GridFormatFinder;
import org.geotools.coverage.grid.io.GridFormatFinderSpi;
import org.geotools.coverage.processing.CoverageProcessor;
import org.geotools.coverage.processing.operation.Interpolation;
import org.geotools.data.DataUtilities;
import org.geotools.factory.Hints;
import org.geotools.geometry.DirectPosition2D;
import org.geotools.geometry.jts.JTSFactoryFinder;
import org.geotools.process.raster.InterpolationProcess;
import org.geotools.process.raster.KernelFactory;
import org.geotools.process.raster.RasterFactory;
import org.geotools.process.raster.RasterFormat;
import org.geotools.process.raster.RasterProcess;
import org.geotools.process.raster.Warp;
import org.geotools.process.raster.WarpBuilder;
import org.geotools.process.raster.WarpFactory;
import org.geotools.process.raster.WarpFactoryFinder;
import org.geotools.process.raster.ZonalStats;
import org.geotools.process.raster.ZonalStatsProcess;
import org.geotools.process.vector.IntersectionFeatureCollection;
import org.geotools.process.vector.VectorToRasterProcess;
import org.geotools.process.vector.VectorToRasterProcessFactory;
import org.geotools.referencing.ReferencingFactoryFinder;
import org.geotools.referencing.operation.DefaultCoordinateOperationFactory;
import org.geotools.referencing.operation.transform.ProjectiveTransform;
import org.geotools.resample.ResampleProcess;
import org.geotools.util.factory.FactoryRegistryException;
import org.locationtech.jts.geom.Geometry;
import org.locationtech.jts.geom.GeometryFactory;
import org.locationtech.jts.geom.Point;
import org.locationtech.jts.geom.Polygon;
import org.locationtech.jts.geom.PrecisionModel;
import org.locationtech.jts.geom.impl.PackedCoordinateSequenceFactory;
public class KrigingInterpolation {
public static void main(String[] args) throws Exception {
// 读取DEM数据
File demFile = new File("path/to/dem.tif");
GridCoverage2DReader demReader = new ArcGridReader(demFile);
GridCoverage2D dem = demReader.read(null);
// 获取DEM的坐标系
CoordinateReferenceSystem demCrs = dem.getCoordinateReferenceSystem();
// 获取DEM的Envelope
Envelope demEnvelope = dem.getEnvelope();
// 构造插值点数据
List<Point> points = new ArrayList<>();
points.add(createPoint(115.5, 39.8));
points.add(createPoint(116.0, 39.9));
points.add(createPoint(116.5, 39.8));
points.add(createPoint(116.0, 39.7));
// 创建插值点的Envelope
ReferencedEnvelope pointsEnvelope = new ReferencedEnvelope(demCrs);
for (Point point: points) {
pointsEnvelope.expandToInclude(point.getX(), point.getY());
}
// 计算插值点在DEM中的像元坐标
GridGeometry demGeometry = dem.getGridGeometry();
GridCoordinates[] coords = new GridCoordinates[points.size()];
for (int i = 0; i < points.size(); i++) {
DirectPosition2D point2D = new DirectPosition2D(demCrs, points.get(i).getX(), points.get(i).getY());
GridCoordinates gridCoord = demGeometry.worldToGrid(point2D);
coords[i] = gridCoord;
}
// 创建插值结果的Envelope
ReferencedEnvelope resultEnvelope = new ReferencedEnvelope(demCrs);
resultEnvelope.expandToInclude(demEnvelope);
resultEnvelope.expandToInclude(pointsEnvelope);
// 创建插值结果的GridGeometry
GridGeometry resultGeometry = new GridGeometry(null, resultEnvelope, demGeometry.getGridToCRS());
// 创建插值器
Interpolator2D interpolator = new KrigingInterpolator();
// 设置插值器参数
ParameterValueGroup params = CommonFactoryFinder.getGridCoverageFactory(null).getDefaultParameters(interpolator);
params.parameter("radius").setValue(100.0);
// 进行插值
GridCoverageFactory coverageFactory = GridCoverageFactoryFinder.getGridCoverageFactory(null);
GridCoverage2D result = coverageFactory.create("result", new BufferedImage(1, 1, BufferedImage.TYPE_BYTE_GRAY), resultEnvelope);
interpolator.interpolate(dem, result, coords, params);
// 输出插值结果
RenderedOp renderedOp = JAI.create("display", result.getRenderedImage());
JAI.create("filestore", renderedOp, "path/to/result.tif", "TIFF");
}
private static Point createPoint(double x, double y) {
GeometryFactory factory = new GeometryFactory(new PrecisionModel(), 4326, PackedCoordinateSequenceFactory.DOUBLE_FACTORY);
return factory.createPoint(new DirectPosition2D(DefaultGeographicCRS.WGS84, x, y));
}
}
```
上面的代码中,我们首先读取了一个DEM数据,然后构造了一些插值点数据,并计算了插值点在DEM中的像元坐标。接着,我们创建了一个插值结果的Envelope和GridGeometry,然后使用KrigingInterpolator对DEM进行插值,并输出插值结果。
阅读全文