python无监督学习聚类
时间: 2023-11-05 11:05:28 浏览: 174
无监督学习:基于质心的聚类算法,即K-Means聚类,聚集聚类和基于密度的空间聚类
无监督学习是机器学习技术中的一类,用于发现数据中的模式。在Python中,可以使用几种聚类算法进行无监督学习,包括K-Means聚类、分层聚类、t-SNE聚类和DBSCAN聚类等。K-Means聚类是一种常用的无监督学习算法,它将数据分成K个不同的簇,使得每个数据点都属于离其最近的簇。分层聚类是一种通过构建树状图来完成聚类的方法,它逐步合并最相似的簇直到只剩下一个根节点。t-SNE聚类是一种用于可视化高维数据的无监督学习算法,它可以将高维数据映射到低维空间,使得数据点在低维空间中的相对距离能够反映其在高维空间中的相似度。DBSCAN聚类是一种基于密度的聚类算法,它通过将密度高的数据点分为一个簇,以及将密度低的数据点视为噪声来进行聚类。
阅读全文