r语言中roc曲线二分类
时间: 2024-05-17 15:16:13 浏览: 118
在R语言中,可以使用plotly包来可视化二分类模型的ROC曲线。首先,你需要计算出模型的真正率(True Positive Rate)和假正率(False Positive Rate),然后使用plotly函数来画出ROC曲线。在曲线中添加AUC(Area Under the Curve)值可以使用annotate函数来实现。以下是一个示例代码:
```R
# 加载plotly包
library(plotly)
# 计算真正率和假正率
true_positive_rate <- c(0.2, 0.4, 0.6, 0.8, 1)
false_positive_rate <- c(0, 0.2, 0.4, 0.6, 1)
# 绘制ROC曲线
roc_curve <- plot_ly(x = false_positive_rate, y = true_positive_rate, type = "scatter", mode = "lines")
roc_curve <- roc_curve %>% add_trace(x = c(0,1), y = c(0, 1), mode = "lines", line = list(dash = "dash"), name = "Random")
# 添加AUC值
roc_curve <- roc_curve %>% layout(annotations = list(x = 0.5, y = 0.5, text = paste("AUC =", auc, sep = ""), showarrow = FALSE))
# 显示ROC曲线
print(roc_curve)
```
这段代码会生成一个二分类模型的ROC曲线,并在曲线上方添加了AUC值。你可以将真正率和假正率替换为你的实际模型结果。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* [R语言plotly可视化:使用plotly可视化二分类模型的ROC曲线、计算并在曲线中添加AUC值(basic binary ROC ...](https://blog.csdn.net/zhongkeyuanchongqing/article/details/122774804)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
- *3* [二分类模型性能评价(R语言,logistic回归,ROC曲线,lift曲线,lorenz曲线)](https://blog.csdn.net/mousever/article/details/46944479)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"]
[ .reference_list ]
阅读全文