np.arange(0,200)
时间: 2023-10-10 17:04:49 浏览: 141
np.arange(0,200)是一个numpy函数,用于生成一个从0到199的一维数组。这个函数的第一个参数是数组的起始值,第二个参数是数组的结束值(不包括),第三个参数是步长,默认为1。所以np.arange(0,200)将生成一个包含0到199的整数的数组。<span class="em">1</span><span class="em">2</span><span class="em">3</span>
#### 引用[.reference_title]
- *1* *2* *3* [np.arange与np.linspace细微区别(数据溢出问题)](https://blog.csdn.net/qq_44722174/article/details/115632368)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"]
[ .reference_list ]
相关问题
#寻参 from sklearn.model_selection import GridSearchCV from sklearn.naive_bayes import MultinomialNB param_grid = { "alpha":np.concatenate( [ np.arange(0.0001,0.001,0.0001), np.arange(0.001,0.01,0.001), np.arange(0.01,0.1,0.01), np.arange(0.1,1,0.1), np.arange(1,10,1), np.arange(10,100,5) ] ) } model = MultinomialNB() grid_cv_model = GridSearchCV(model,param_grid,n_jobs=-1,verbose=3,cv=3) grid_cv_model.fit(x_train_df,y_train)
这段代码是用来进行朴素贝叶斯模型的参数寻优的。具体来说,代码中:
- `GridSearchCV` 是一个网格搜索交叉验证工具,可以帮助我们自动寻找最优的模型参数。
- `MultinomialNB` 是朴素贝叶斯分类器的一种,代码中使用的就是这个分类器。
- `param_grid` 是一个字典类型,用来指定我们要进行参数寻优的参数及其取值范围。在这个例子中,我们对朴素贝叶斯分类器的超参数 alpha 进行调优,将其取值范围分成了6个区间,每个区间内的取值范围不同,共计调优了 113 个不同的参数组合。
- `model` 是我们要调优的模型,即朴素贝叶斯分类器。
- `n_jobs=-1` 表示使用所有的 CPU 核心来进行模型训练,加快运行速度。
- `verbose=3` 表示输出调参过程中的详细日志信息。
- `cv=3` 表示使用 3 折交叉验证来评估每个参数组合的性能。
import numpy as np a=np.arange(3) b=np.arange(4) c=np.arange(5) np.savez('array_save.npz',a,b,c) 多个ndarray类型的数组
这段代码使用NumPy将三个ndarray类型的数组a、b、c保存到名为“array_save.npz”的文件中。
可以使用以下代码加载这些数据:
```python
data = np.load('array_save.npz')
a = data['arr_0']
b = data['arr_1']
c = data['arr_2']
```
其中,'arr_0'、'arr_1'、'arr_2'是自动生成的键值,对应着保存时的数组a、b、c。如果需要自定义键值,可以在保存时使用关键字参数指定,例如:
```python
np.savez('array_save.npz',x=a,y=b,z=c)
```
然后可以使用以下代码加载数据:
```python
data = np.load('array_save.npz')
a = data['x']
b = data['y']
c = data['z']
```
阅读全文