配置损失函数:使用交叉熵损失函数(nn.CrossEntropyLoss)。 配置优化器:使用 Adam 优化器(optim.Adam)。这些没有在代码中体现,请补充完整
时间: 2024-10-16 10:02:27 浏览: 60
当然,以下是完整的模型训练部分,包括配置损失函数和优化器:
```python
# Step 2: 模型训练
# 定义损失函数(交叉熵)
loss_function = nn.CrossEntropyLoss()
# 使用Adam优化器
optimizer = optim.Adam(model.parameters(), lr=0.001) # 设置学习率为0.001,默认的betas=(0.9, 0.999),eps=1e-8
# 训练循环
for epoch in range(num_epochs): # 假设num_epochs是你想要的训练轮数
running_loss = 0.0
for inputs, labels in train_iterator:
inputs = inputs.to(device)
labels = labels.to(device)
# 清零梯度
optimizer.zero_grad()
# 前向传播
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
loss = loss_function(outputs, labels)
# 反向传播并更新权重
loss.backward()
optimizer.step()
# 打印训练信息
running_loss += loss.item()
average_train_loss = running_loss / len(train_iterator)
print(f"Epoch [{epoch + 1}/{num_epochs}], Average Training Loss: {average_train_loss:.4f}")
# 测试模型
with torch.no_grad():
running_test_loss = 0.0
correct = 0
total = 0
for inputs, labels in test_iterator:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
average_test_loss = running_test_loss / len(test_iterator)
accuracy = correct / total
print(f"Epoch [{epoch + 1}/{num_epochs}], Average Test Loss: {average_test_loss:.4f}, Accuracy: {accuracy*100:.2f}%")
```
这里我们设置了`num_epochs`为训练的轮数,并在每个epoch结束后计算平均训练和测试损失,以及测试精度。`loss_function`和`optimizer`分别代表了交叉熵损失函数和Adam优化器。
阅读全文