蚁群算法旅行商伪代码python
时间: 2023-12-27 12:25:04 浏览: 127
以下是蚁群算法解决旅行商问题的伪代码示例(使用Python编写):
```python
# 导入所需的库
import random
# 初始化参数
num_ants = 10 # 蚂蚁数量
num_iterations = 100 # 迭代次数
alpha = 1 # 信息素重要程度因子
beta = 2 # 启发式因子
rho = 0.5 # 信息素蒸发系数
Q = 100 # 信息素增加强度
num_cities = 10 # 城市数量
# 初始化城市距离矩阵
distance_matrix = [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[1, 0, 2, 3, 4, 5, 6, 7, 8, 9],
[2, 2, 0, 3, 4, 5, 6, 7, 8, 9],
[3, 3, 3, 0, 4, 5, 6, 7, 8, 9],
[4, 4, 4, 4, 0, 5, 6, 7, 8, 9],
[5, 5, 5, 5, 5, 0, 6, 7, 8, 9],
[6, 6, 6, 6, 6, 6, 0, 7, 8, 9],
[7, 7, 7, 7, 7, 7, 7, 0, 8, 9],
[8, 8, 8, 8, 8, 8, 8, 8, 0, 9],
[9, 9, 9, 9, 9, 9, 9, 9, 9, 0]]
# 初始化信息素矩阵
pheromone_matrix = [[1 for _ in range(num_cities)] for _ in range(num_cities)]
# 初始化最佳路径和最短距离
best_path = []
best_distance = float('inf')
# 开始迭代
for iteration in range(num_iterations):
# 初始化蚂蚁的位置和已访问城市列表
ants = [[random.randint(0, num_cities-1)] for _ in range(num_ants)]
visited = [[False for _ in range(num_cities)] for _ in range(num_ants)]
# 计算每只蚂蚁的路径
for ant in range(num_ants):
for _ in range(num_cities-1):
current_city = ants[ant][-1]
unvisited_cities = [city for city in range(num_cities) if not visited[ant][city]]
# 计算下一个城市的选择概率
probabilities = []
total = 0
for city in unvisited_cities:
pheromone = pheromone_matrix[current_city][city]
distance = distance_matrix[current_city][city]
probabilities.append((city, pheromone**alpha * (1/distance)**beta))
total += pheromone**alpha * (1/distance)**beta
# 根据选择概率选择下一个城市
probabilities = [(city, prob/total) for city, prob in probabilities]
next_city = random.choices([city for city, _ in probabilities], [prob for _, prob in probabilities])[0]
# 更新蚂蚁的位置和已访问城市列表
ants[ant].append(next_city)
visited[ant][next_city] = True
# 更新信息素矩阵
delta_pheromone = [[0 for _ in range(num_cities)] for _ in range(num_cities)]
for ant in range(num_ants):
distance = sum(distance_matrix[ants[ant][i]][ants[ant][i+1]] for i in range(num_cities-1))
if distance < best_distance:
best_distance = distance
best_path = ants[ant]
for i in range(num_cities-1):
delta_pheromone[ants[ant][i]][ants[ant][i+1]] += Q / distance
pheromone_matrix = [[(1-rho)*pheromone + delta_pheromone[i][j] for j, pheromone in enumerate(row)] for i, row in enumerate(pheromone_matrix)]
# 输出最佳路径和最短距离
print("Best path:", best_path)
print("Best distance:", best_distance)
```
阅读全文