stm32g030c8t6让tx脚发数据usart0和usart1的rx接收
时间: 2023-12-13 10:00:33 浏览: 104
要让STM32G030C8T6的TX引脚发送数据给USART0和USART1的RX引脚接收数据,需要进行以下步骤:
1. 初始化USART0和USART1的串口通信配置。使用相应的寄存器来配置波特率、数据位、停止位、校验位等通信参数。可以使用STM32的库函数或者手动配置寄存器来完成初始化过程。
2. 配置GPIO引脚的复用功能。由于USART0和USART1的RX引脚需要接收数据,需要将对应的GPIO引脚配置为串口通信功能。使用GPIO的复用寄存器设置引脚的复用功能,并将其映射到相应的USART功能。
3. 配置USART0和USART1的中断功能(可选)。为了实现接收数据时的中断处理,可以配置相应的USART接收中断。中断处理函数可以在接收到数据后进行处理,如存储数据到缓冲区。
4. 在发送数据前,检查USART的状态。使用USART的状态寄存器检查USART是否准备好发送数据。确保发送缓冲区为空,否则等待发送完成。
5. 使用USART的发送寄存器将数据发送给USART0和USART1的TX引脚。将需要发送的数据写入寄存器,数据将通过TX引脚发送出去。
通过以上步骤,我们可以实现让STM32G030C8T6的TX引脚发送数据给USART0和USART1的RX引脚接收数据的功能。可以根据具体的需求,进行相应的配置和修改。
相关问题
stm32cubemx用stm32g030c8t6串口通信步骤
你好,以下是使用STM32CubeMX进行STM32G030C8T6串口通信的步骤:
1. 打开STM32CubeMX软件,创建一个新的工程并选择STM32G030C8T6芯片型号。
2. 在"Pinout & Configuration"选项卡中,选择串口通信要使用的引脚并将它们配置为USART模式。比如,你可以选择PA9引脚作为USART1的发送引脚(TX),选择PA10引脚作为USART1的接收引脚(RX)。
3. 在"Configuration"选项卡中,配置USART参数,比如波特率、数据位、停止位、校验位等等。你需要根据你的具体应用要求进行设置。
4. 在"Project Manager"选项卡中,生成代码并下载到你的开发板上。
5. 在你的代码中,初始化USART外设并使用HAL库中的相应函数进行串口数据的发送和接收。
希望这些步骤能够帮助你进行STM32G030C8T6的串口通信。
stm32g030c8t6使用cubeMx读取PA5电池电量的数据并显示到串口
好的,以下是使用CubeMX读取PA5电池电量的数据并显示到串口的步骤:
1. 打开CubeMX,选择相应的芯片型号(stm32g030c8t6),创建一个新的工程。
2. 在Pinout标签页中,将PA5引脚配置为模拟输入模式(Analog)。
3. 在Configuration标签页中,选择ADC1,然后将ADC1的采样时间设置为合适的值(比如6个时钟周期)。
4. 在Code Generation标签页中,选择使用HAL库,并勾选USART2串口的使能选项。
5. 在main函数中,使用HAL库的函数初始化ADC和串口,并设置ADC的通道为PA5。
6. 在while循环中,使用HAL库的函数启动ADC转换,并等待转换完成。
7. 在转换完成后,使用HAL库的函数将读取到的电量值转换为电压值,并将电压值以字符串的形式发送到串口上。
下面是示例代码:
```c
#include "main.h"
#include "stdio.h"
#include "string.h"
ADC_HandleTypeDef hadc1;
UART_HandleTypeDef huart2;
float battery_voltage = 0.0;
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_ADC1_Init(void);
static void MX_USART2_UART_Init(void);
int main(void)
{
HAL_Init();
SystemClock_Config();
MX_GPIO_Init();
MX_ADC1_Init();
MX_USART2_UART_Init();
while (1)
{
HAL_ADC_Start(&hadc1);
HAL_ADC_PollForConversion(&hadc1, 100);
uint16_t adc_value = HAL_ADC_GetValue(&hadc1);
battery_voltage = (float)adc_value / 4096 * 3.3;
char buffer[32];
sprintf(buffer, "Battery voltage: %.2fV\r\n", battery_voltage);
HAL_UART_Transmit(&huart2, (uint8_t*)buffer, strlen(buffer), 100);
HAL_Delay(1000);
}
}
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
{
Error_Handler();
}
}
static void MX_ADC1_Init(void)
{
ADC_ChannelConfTypeDef sConfig = {0};
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2;
hadc1.Init.Resolution = ADC_RESOLUTION_12B;
hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
hadc1.Init.LowPowerAutoWait = DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.NbrOfConversion = 1;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.DMAContinuousRequests = DISABLE;
hadc1.Init.Overrun = ADC_OVR_DATA_OVERWRITTEN;
hadc1.Init.OversamplingMode = DISABLE;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
sConfig.Channel = ADC_CHANNEL_5;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_6CYCLES_5;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
}
static void MX_USART2_UART_Init(void)
{
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
}
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
__HAL_RCC_GPIOA_CLK_ENABLE();
GPIO_InitStruct.Pin = GPIO_PIN_5;
GPIO_InitStruct.Mode = GPIO_MODE_ANALOG;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
void Error_Handler(void)
{
__disable_irq();
while (1)
{
}
}
```
这个例子会每秒钟读取一次PA5引脚的电量值,并将电量值转换为电压值(假设PA5引脚连接的是一个0-3.3V的电压信号),然后通过USART2串口发送到PC端。你可以在串口调试软件中查看电压值的变化。
阅读全文