麻雀搜索算法python
时间: 2023-08-25 13:16:29 浏览: 140
麻雀搜索算法是一种基于鸟类群体行为的优化算法。在Python中,可以通过调用ISSA函数来实现麻雀搜索算法。在代码中,我们可以设定搜索空间范围、维度、种群大小和迭代次数等参数。通过运行代码,我们可以得到最优解以及对应的适应度值。
以下是一个示例代码的运行结果:
```
num_iter = 1000
num_birds = 20
lb = np.array([-5.12]*10)
ub = np.array([5.12]*10)
dim = 10
best_fit, best_X = ISSA(num_iter, num_birds, lb, ub, dim)
print('Best Fitness:', best_fit)
print('Best Solution:', best_X)
```
输出结果如下:
```
Iteration: 0, Best Fitness: 73.29197145
Iteration: 1, Best Fitness: 40.89081168
Iteration: 2, Best Fitness: 37.94761914
...
Iteration: 997, Best Fitness: 21.62041397
Iteration: 998, Best Fitness: 21.62040698
Iteration: 999, Best Fitness: 21.62040698
Best Fitness: 21.620406981665397
Best Solution: [-2.90344519e-09 -3.50086383e-09 -8.04006048e-10 -4.59692597e-10 -9.05804976e-09 1.56836924e-09 2.47188163e-09 -7.81429117e-09 -1.46375500e-09 -5.11505994e-09]
```
以上是麻雀搜索算法在Python中的使用示例。通过调用ISSA函数,我们可以得到在给定参数下的最优解以及对应的适应度值。<em>1</em><em>2</em>
#### 引用[.reference_title]
- *1* *2* [基于莱维飞行策略的麻雀搜索算法(ISSA)附Python代码](https://blog.csdn.net/m0_47037246/article/details/130649183)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}} ] [.reference_item]
[ .reference_list ]
阅读全文