ZHANG-SUEN
时间: 2024-05-04 08:14:54 浏览: 112
ZHANG-SUEN算法是一种用于图像二值化后的细化处理的算法。它可以将图像中的细线条变得更加细长和连续。以下是ZHANG-SUEN算法的步骤[^1]:
1. 初始化一个标志位,用于指示是否有像素点被删除。
2. 对于图像中的每个像素点,执行以下两个子步骤:
a. 检查当前像素点是否为背景(黑色),如果是则跳过。
b. 检查当前像素点是否满足以下两个条件:
- 周围8个像素点中,有且仅有一个像素点是背景(黑色)。
- 当前像素点的周围8个像素点中,从左上角开始顺时针方向计数,有2到6个像素点是背景(黑色)。
如果满足以上两个条件,则将当前像素点标记为待删除,并将标志位设置为True。
3. 对于图像中的每个像素点,执行以下两个子步骤:
a. 检查当前像素点是否为背景(黑色),如果是则跳过。
b. 检查当前像素点是否满足以下两个条件:
- 周围8个像素点中,有且仅有一个像素点是背景(黑色)。
- 当前像素点的周围8个像素点中,从左上角开始顺时针方向计数,有2到6个像素点是背景(黑色)。
如果满足以上两个条件,则将当前像素点标记为待删除,并将标志位设置为True。
4. 重复步骤2和步骤3,直到没有像素点被标记为待删除。
5. 对于图像中的每个像素点,执行以下两个子步骤:
a. 检查当前像素点是否为背景(黑色),如果是则跳过。
b. 检查当前像素点是否满足以下两个条件:
- 周围8个像素点中,有且仅有一个像素点是背景(黑色)。
- 当前像素点的周围8个像素点中,从左上角开始顺时针方向计数,有2到6个像素点是背景(黑色)。
如果满足以上两个条件,则将当前像素点标记为待删除,并将标志位设置为True。
6. 重复步骤4和步骤5,直到没有像素点被标记为待删除。
7. 细化处理完成。
以下是一个使用ZHANG-SUEN算法进行图像细化的Python代码示例[^1]:
```python
import cv2
def zhang_suen_thinning(image):
# 将图像转换为二值图像
ret, binary_image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)
# 初始化标志位
has_deletion = True
while has_deletion:
has_deletion = False
# 第一次迭代
for i in range(1, binary_image.shape - 1):
for j in range(1, binary_image.shape - 1):
if binary_image[i, j] == 0:
continue
# 获取周围8个像素点的值
neighbors = [binary_image[i-1, j-1], binary_image[i-1, j], binary_image[i-1, j+1],
binary_image[i, j-1], binary_image[i, j+1],
binary_image[i+1, j-1], binary_image[i+1, j], binary_image[i+1, j+1]]
# 计算周围像素点的背景(黑色)数量
num_background = neighbors.count(0)
# 计算周围像素点的背景(黑色)到非背景(白色)的过渡数量
num_transitions = 0
for k in range(len(neighbors)):
if neighbors[k] == 255 and neighbors[(k+1) % len(neighbors)] == 0:
num_transitions += 1
# 检查是否满足删除条件
if num_background == 1 and 2 <= num_transitions <= 6:
binary_image[i, j] = 0
has_deletion = True
# 第二次迭代
for i in range(1, binary_image.shape - 1):
for j in range(1, binary_image.shape - 1):
if binary_image[i, j] == 0:
continue
# 获取周围8个像素点的值
neighbors = [binary_image[i-1, j-1], binary_image[i-1, j], binary_image[i-1, j+1],
binary_image[i, j-1], binary_image[i, j+1],
binary_image[i+1, j-1], binary_image[i+1, j], binary_image[i+1, j+1]]
# 计算周围像素点的背景(黑色)数量
num_background = neighbors.count(0)
# 计算周围像素点的背景(黑色)到非背景(白色)的过渡数量
num_transitions = 0
for k in range(len(neighbors)):
if neighbors[k] == 255 and neighbors[(k+1) % len(neighbors)] == 0:
num_transitions += 1
# 检查是否满足删除条件
if num_background == 1 and 2 <= num_transitions <= 6:
binary_image[i, j] = 0
has_deletion = True
# 将二值图像转换为灰度图像
thinned_image = cv2.cvtColor(binary_image, cv2.COLOR_BINARY2GRAY)
return thinned_image
# 读取图像
image = cv2.imread('input_image.png', cv2.IMREAD_GRAYSCALE)
# 进行细化处理
thinned_image = zhang_suen_thinning(image)
# 显示结果
cv2.imshow('Thinned Image', thinned_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
请注意,上述代码中的`input_image.png`是输入图像的文件名,你需要将其替换为你自己的图像文件名。
阅读全文
相关推荐

















