matlab迭代最小二乘代码示例
时间: 2024-02-17 21:58:37 浏览: 75
最小二乘法的MATLAB代码
当涉及到迭代最小二乘问题时,常用的方法是使用迭代算法,如高斯-牛顿算法或Levenberg-Marquardt算法。下面是一个使用Levenberg-Marquardt算法的MATLAB代码示例:
```matlab
% 定义目标函数
function F = targetFunction(x, y, params)
F = params(1)*exp(-params(2)*x) - y;
end
% 定义雅可比矩阵
function J = jacobianMatrix(x, params)
J = [exp(-params(2)*x),-params(1)*x.*exp(-params(2)*x)];
end
% 初始化参数
params = [1; 0.1]; % 初始参数值
maxIter = 100; % 最大迭代次数
tolerance = 1e-6; % 收敛容差
% 生成样本数据
x = linspace(0, 1, 100);
y = 2*exp(-0.5*x) + randn(size(x))*0.05;
% 迭代最小二乘算法
for iter = 1:maxIter
% 计算目标函数和雅可比矩阵
F = targetFunction(x, y, params);
J = jacobianMatrix(x, params);
% 更新参数
delta = (J'*J + lambda*eye(size(J,2))) \ (J'*F);
params_new = params - delta;
% 判断是否收敛
if norm(params_new - params) < tolerance
break;
end
% 更新参数和lambda
params = params_new;
lambda = lambda * 0.1;
end
% 输出结果
disp('迭代次数:');
disp(iter);
disp('最优参数:');
disp(params);
```
在这个示例中,我们定义了目标函数`targetFunction`和雅可比矩阵`jacobianMatrix`,并使用Levenberg-Marquardt算法进行迭代最小二乘优化。我们通过生成一些样本数据来演示代码的使用。在迭代过程中,我们计算目标函数和雅可比矩阵,并使用线性方程求解器来更新参数。迭代过程会根据收敛条件进行判断,如果参数变化小于收敛容差,则停止迭代。
阅读全文